Hartford May Rebuild I-84 Viaduct at Street Level to Unify Downtown
Will Remove a Major Barrier and Do Away with Unattractiveness of Adjacent Land

Last month, the Capitol Region Council of Governments (CRCOG), in Connecticut, released the results of a study that looked at options for the future of I-81, which is a grade-separated freeway in downtown Hartford. One of the key alternatives presented is the idea of lowering the I-84 viaduct to street level and replacing it with an at-grade freeway.

The impetus for examining the alternatives is the approaching end of the existing viaduct’s useful life. The viaduct was built in 1965 and is a 3/4 mile stretch of elevated freeway extending from the Sisson Avenue interchange to the Asylum and Capitol Avenue interchanges. The segment connects the Hartford core with surrounding neighborhoods and suburbs, and is the state’s highest volume roadway with average daily traffic of 175,000. The segment also accounts for a significant amount of regional congestion and forms a major barrier that divides the downtown Hartford core, creating a “no man’s land” separating neighborhoods and leaving surrounding land underutilized and unattractive. The study seeks to address the transportation, urban design, and economic development perspectives and present three main alternatives that will be used by the Connecticut Department of Transportation as a starting point for more in depth examination of replacement alternatives.

The study team looked at comparable projects and urban highway viaduct replacement strategies, and reviewed five projects: the Embarcadero in San Francisco, the largest bike-sharing program in the United States. The study also highlights the potential and viability of bike sharing as a new sustainable mobility option. It will be the first deployment of its kind in California and will build upon other North American and European experiences with bike-sharing programs and provide a range of “lessons learned” for a viable program.

The Bay Area plans to use $7 million to implement the largest bike-sharing program in the U.S. Of the $7 million, $4.3 million are provided from a grant awarded to the Metropolitan Transportation Commission in Oakland, CA. The Bay Area Air Quality Management District (BAAQMD) will lead a partnership of local jurisdictions that includes the San Francisco Municipal Transportation Agency, Sam-Trans, the County of San Mateo, the City of Redwood City, and the Santa Clara Valley Transportation Authority. The BAAQMD will contribute $1.4 million and the other partners will contribute the remaining $1.7 million.

A goal of the project is to test bike sharing in the Bay Area and demonstrate the potential and viability of bike sharing as a new sustainable mobility option. It will be the first deployment of its kind in California and will build upon other North American and European experiences with bike-sharing programs and provide a range of “lessons learned” for a viable program.

Please turn to Page 6
New White Paper Makes Case for Smart Mobility

Five Categories Identified Where Technology Can and Has Affected Transportation; Case Studies Presented

A White Paper titled “Smart Mobility for a 21st Century America: Strategies for Maximizing Technology to Minimize Congestion, Reduce Emissions, and Increase Efficiency” was recently released. The paper was co-authored by ITS America, Transportation for America, the Association for Commuter Transportation, and the University of Michigan’s SMART Initiative. The objective of the paper is to present the case for employing a greater use of technology to increase the efficiency and lower costs in the U.S. transportation system as Congress prepares to reauthorize the national transportation program. The paper also presents a case for innovations and technologies that were either developed recently or unused in the past.

The paper highlights five categories where technology can and has been impacting transportation:

- **The first category is the efficiency of existing transportation systems and using technologies -- such as ramp metering, signal timing, and advanced traveler information systems -- to improve volume and throughput in existing infrastructure.**

- **The second category is increasing travel options and employing information technology to enable people to utilize a greater variety of travel options such as vanpools, carpools, car-sharing, bicycle-sharing, and other on-demand means of travel.**

- **The third is better information and how more information can help people plan more efficient travel and choose the best service options, routes, and travel times.**

- **The fourth is pricing and payments and how information technology can control and adjust the pricing for transportation service in response to demand. Examples are smart parking meters, variable tolls, and managed lanes. Wider varieties of payment media also allow more convenient payment for transportation service and can be adjusted to accommodate subsidies for low income groups.**

- **The fifth is trip and traffic reduction and how contemporary communication technology reduces the demand for travel. The classic example is telecommuting cutting down on commuting, but online access to banking, shopping, medicine, education, and entertainment also impact travel demand.**

The paper offers seven recommendations for federal transportation policy. The recommendations include a call for national standards for congestion and emissions reductions while increasing economic growth and accessibility, as well as incentives and funding for the adoption of intelligent transportation systems (ITS) and innovative technology solutions for the transportation system. The recommendations also call for a unified framework for states, metropolitan agencies, transit agencies, local governments and the private sector to cooperate on the development and deployment of new technologies, as well as a demonstration grant program for deployments of large-scale ITS solutions.

The paper presents a series of case studies highlighting the five categories of technology impact:

- **The Yellowstone LINX Cooperative, integrating transportation providers in 27 counties, as an example of integrated trip planning and fare payment.**

- **The SmartBus Project in Chattanooga, TN for producing significant savings and making ticketing and finding buses easier.**

- **Pittsburgh’s ACCESS program for integrating non-profit and for-profit transit providers to maximize service for the elderly and disabled.**

- **The SFpark program in San Francisco for cutting idle driving and congestion by making street parking easier with networked sensors in parking spaces.**

- **Traffic and emissions reductions in Portland, OR from improved timing and coordination of traffic signals.**

- **Congestion relief in Minneapolis through managed lanes and peak-period transit discounts.**

- **Increased public health with a first-in-region bikesharing program in Pottstown, PA.**

- **Increased bus system efficiency in Salt Lake City with the MAX Bus Rapid Transit System.**

- **Trip reduction and increased efficiency with a new transportation hub in Chennai, India.**

- **Increased carpooling with the Dynamic Ridesharing program in Cork, Ireland.**

- **Trip reduction and more telecommuting with Washington State’s telecommuting program.**

- **Trip reduction with Oakland’s GreenTRIP program influencing residential development.**

For more information, contact David Goldberg, tel. (202) 412-7930, david.goldberg@t4america.org or Emily Fishkin at tel. (202) 721-4204, efishkin@itsa.org.
Santa Barbara City Council Divided Over Policies to Reduce Traffic Congestion

Some Members Condemn Policies to Alter Human Behavior

The Santa Barbara, CA City Council has become divided over the direction of transportation policies to reduce traffic congestion.

Santa Barbara is a small city of approximately 90,000 people, relatively compact, with mostly flat terrain. It is one of the most walkable and bikeable cities in California. “It was already that way when I first came here in 1980 to go to college, and it is still so today,” says Council Member Dale Francisco. Santa Barbara is also a mature city that is not contemplating any major changes in the transportation grid.

As the city has grown, congestion has intensified. The current Santa Barbara City Council debate is focused in large part on what the city should or shouldn’t do to fight traffic congestion. According to media reports, the Santa Barbara Planning Commission’s final “hybrid alternative” plan sidesteps the issue of future traffic problems—perhaps in order to get enough votes for passage. In fact, the hybrid plan acknowledges increasing congestion. According to the “Santa Barbara Independent,” traffic is expected to increase 10 percent during the morning peak, and 10 to 13 more intersections will move to an unacceptable level of service.

Why are council members shying away from traditional policies to reduce congestion?

Some council members, led by Michael Self, believe that the city has supported policies favorable to people who ride bicycles, walk frequently and use buses over those who use cars as their main mode of transportation. Self was elected in large part on the basis of her opposition to the city’s transportation planning. She has called it an anti-car agenda.

Other council members disagree. They support building housing downtown along transit corridors as well as continuing to improve alternative modes such as bus services and bicycle paths. Council Member Das Williams, for example, has been a consistent advocate for increasing the number of bus routes and faster buses. He has supported mass transit with such measures as subsidized bus passes. Similarly, alternative transportation advocate Alex Pujo has urged the council not to alter the multimodal nature of its transportation planning. Pujo represents COAST (Coalition for Sustainability), which provides advocacy, education and outreach to improve transportation options in the Santa Barbara Region, promoting rail, bus, bike and pedestrian access.

What happened to cause this backlash?

According to Francisco, ever since the 1960s transportation planners in Santa Barbara have worked to boost cycling. “We have a great—and underutilized—system of bike paths and bike lanes, and a very active Bicycle Coalition,” he said. Francisco decries what he sees as social engineering. City transportation staff believe that “if we just reduce the convenience of using the automobile a little more (e.g., by limiting available parking, or eliminating traffic lanes), that everyone will start doing as the planners know is best for them—i.e., ride a bike or take the bus”, he said. Francisco told UTM that “we should spend our limited transportation dollars on things the taxpayers actually use, rather than on demonstration projects for activists.”

For more information, visit http://www.santabarbaraca.gov/Government/Departments/PW/transplan_main.htm or contact Dale Francisco at dfrancisco@santabarbaraca.gov.
Product and Industry News

Elevated High-Speed Bus Maker Seeks U.S. Manufacturer

On October 25, the U.S. Elevated High-Speed Bus Group, Inc. announced it is seeking a partnership with a U.S.-based manufacturing company to license and build their elevated, “straddling” bus, invented by Mr. Song Youzhou of Shenzhen, China. The company hopes to build for the U.S. market a large, elevated bus that carries passengers above street level and straddles two lanes of traffic. The bus is claimed to be a creative, low carbon, mass transit solution that avoids the cost of building new infrastructure by modifying existing road systems.

The bus allows cars to drive underneath the passenger compartments and travels along rails or specially painted guidelines along the outer sides of the traffic lanes. The current plans call for a bus that is about 14.5 feet high and 20 feet wide, with about 7 feet of vertical clearance underneath for vehicles. The bus is divided up into four compartments, each accommodating approximately 300 passengers. If an accident happens, the designs call for automatically opening doors on the side of the bus that fall out and can be used by passengers to get to the ground level. The model for this approach is escape systems and inflated ladders in airplanes.

The bus is designed to be electrically powered and charged at mounted charge-points connected to municipal power along its route and at bus stops. The maximum distance between charge points is about 1.9 miles. It will use signal priority for turns in a similar manner as BRT or streetcar systems, and will have a red stop light mounted on the back to stop cars from going underneath before the bus turns.

The company estimates the cost of one bus to be approximately $4 million, with a system cost of $12 million per mile, depending on the size and conditions of the system. The company considers many U.S. cities as ideal for implementation of the system, citing the fact that the major modifications to existing roads would primarily be the traffic signaling and the cities would gain mass transit without the time and cost of major construction or the cost of right-of-way acquisition.

The company states a prototype is under construction in China and will be presented to the public in 2011. It expects the earliest applications to be in Chinese markets, and states an ideal U.S. partner would be an RV, motor home, aircraft, train, or bus manufacturer.

For more information contact Mark Shieh, highspeedbus@yahoo.com, 626-581-7969.

Please turn to Page 5
Streetline's Smart Parking Systems Named Winner of IBM SmartCamp; Vehicle Occupancy Detection Allows Parking Policy Management

Streetline Inc. announced that it has been named co-winner of IBM's SmartCamp Silicon Valley. Streetline works with municipalities to design and operate smart parking systems based on its patented low-power sensor networks so that drivers can quickly locate parking and cities can manage their parking resources more efficiently. Experts estimate that over 30 percent of urban traffic congestion is caused by drivers looking for parking.

The Streetline system consists of patented hardware, software, and a subscription service. The hardware includes low-power mesh networks and vehicle-occupancy detection sensors. The software includes applications for parking policy management enabling dynamic pricing and motorist way finding. Parking meter integration enables additional applications for enforcement, maintenance and collections. The fully hosted software as a service (SaaS) subscription is web-based and includes monitoring around the clock every day of the year.

Asked to describe how the system works, Mark Noworolski, Streetline’s chief technology officer, said that Streetline vehicle detectors, which contain sensors and software, are deployed in parking spaces in either a surface-mounted or flush-mounted configuration. Once deployed, they form a patented secure, self-healing mesh network for retrieving and sending data—a network where, if one device fails, another device can take over. This mesh network, operating together with Streetline’s sensor management system, creates a parking measurement platform that provides uninterrupted occupancy information 24 hours a day, seven days a week.

Streetline's parking measurement platform employs proprietary data fusion algorithms that allow it to interpret information from data collected by individual sensors to provide accurate vehicle occupancy information for customer applications.

Streetline provides tools and information that allow cities to better manage their parking resources. With Streetline information, Noworolski said, transportation officials can set dynamic meter pricing, guide traffic to reduce congestion, and optimize their mobile workforce for meter maintenance, collections and enforcement. At the same time, Streetline serves to get citizens to where they want to go faster, while lessening the hassle of searching for parking. It helps drivers find and pay for parking more easily, and in some cases, it can help drivers pay less for parking, and get fewer and fairer tickets.

Noworolski told UTM that Streetline currently has pilot programs deployed in San Francisco, Los Angeles, Culver City and Sausalito, California. The company expects to expand to other areas in the next few months.

“Streetline’s wireless sensors and technologies will be critical to connecting the people and places that make our cities more efficient and environmentally friendly” said Claudia Fan Munce, managing director, IBM Venture Capital Group. “Streetline is a great example of a company with technology that can help make our cities smarter, that we want to help expand and grow through our deep enterprise expertise.”

IBM Smart Camps, launched earlier this year, judge the best start-up company in different cities around the globe, rewarding the winners with mentoring, services, access to industry experts, and deeper partnership opportunities from IBM, venture capital firms and industry partners.

For more information, visit http://www.streetlinenetworks.com/site/index.php or contact Annika Jensen-Lamka at tel. (415) 516-3530 or by e-mail at annika@sparkpr.com.

U.K. Vehicle Occupancy Camera Tested and Being Marketed; Can Distinguish Between Humans and Pets, Luggage

The latest model of a camera system that can remotely detect the number of passengers in a vehicle and distinguish between humans and non-human objects such as dummies, pets, or luggage, now has been tested and is ready for production.

The model, known as the ditect camera, was built with technology developed initially at Loughborough University in the United Kingdom and further developed by Vehicle Occupancy Limited, a spin-off company from the university. The camera is housed in a weather- and vandal-proof housing and can be mounted roadside or on freeway overpasses or overhead sign structures. The camera works by illuminating a vehicle’s windscreen area with two different wavelengths of infrared light. Two digital infrared pictures are taken of the windscreen at the instant of illumination and processed by proprietary algorithms to detect the number of human occupants. The output, in the form of an occupancy count, can be integrated into a larger automated traffic management system or transmitted or stored for additional processing or application. Applications include congestion charging, road tolling, HOT/HOV vehicle lane enforcement or data collection.

Researchers have been perfecting the system for years. One of the first prototypes, known as Cyclopes was tested on Scotland’s Forth Road Bridge as well as at other locations in the U.K. According to John Tyrer, technical director for Vehicle Occupancy Limited, recent testing demonstrated an accuracy rate of 85-90% and has been tested on a racetrack with various passenger configurations and speeds, as well as in hot and cold environments.

The cameras have been tested in North America, but are not yet in use there. The company currently is involved in discussions with a number of potential users. The price of the system is about $150,000 for a basic camera, illumination system, and backend processing system.

For more information, email Vehicle Occupancy Limited at enquiries@vehicleoccupancy.com or tel. +44 (0) 1509 228733. Website: http://www.vehicleoccupancy.com.
Bike-Sharing Program Planned for SF

in the targeted region. The program aims to deploy 1,000 bikes for use in 100 kiosks in five transportation corridor communities along a Caltrain line. Initially 500 bikes will be deployed in San Francisco at 50 kiosks. A further 400 bikes will be deployed to Santa Clara County and kiosks will be located near Caltrain stations in San Jose, Diridon, Mountain View, and Palo Alto. These kiosks will provide connections to major universities, business parks, corporate campuses, and downtown areas. Finally, 100 bikes will be deployed to San Mateo county, with kiosks at the Redwood City Caltrain station and downtown San Mateo.

Each kiosk will hold approximately 10 bikes, although capacity may vary depending on the needs of individual locations. The program will operate via a subscription model, with members paying subscription fees, entitling them to access the bikes for short periods of time (one half hour, for example) followed by incremental additional charges based on the amount of time the bike was used. Under this model, commuters would rent bikes in the morning and afternoon for trips to and from transit stations, and would not rent bikes for the entire day. Bikes will be redistributed throughout the day and a bike-reservation component is planned. The BAAQMD has yet to determine whether a single vendor or group of vendors will operate the program, but the procurement process and formal competitive bidding to select a vendor or vendors will begin in 2011.

For more information, contact Aaron Richardson by tel. at (415) 749-4900, or by e-mail at ARichardson@baaqmd.gov.

Roadway and relocating the rail line; and replacing the viaduct with a tunnel and relocating the rail line.

It was found that rebuilding at ground level and depressed in some sections with air rights development would eliminate the need for space-consuming elevated ramps and approaches and free land for redevelopment. These changes would allow new boulevards to connect previously disconnected areas of the city and unify the downtown area. Approximately 15 – 20 acres of land would open up and could accommodate new options for an enhanced downtown, including for instance, more pedestrian paths. In addition, the overall visibility of the highway would be less, and a potential for transit-oriented development would be created. Finally the long term maintenance cost of a street-level highway would be significantly less when compared to a viaduct.

The study concludes that the tunnel option offers the most benefits, but comes at the greatest cost and a much higher cost relative to other options. The roadway replacement offers nearly the same benefits as the tunnel, but at considerably lower cost. The enhanced viaduct with improved access is expected to be slightly more costly than the baseline, while it does not offer as much benefit as the other alternatives. The study concludes the baseline option as addressing highway needs but rating poorly in terms of urban design, and fairly in terms of economic development.

The study findings are in the process of being presented to the Hartford City Council and CRCOG Policy Board meetings this month. The next steps will include more detailed environmental, traffic, structural and other analysis as well as public outreach. Funding for further studies is being reviewed. Additional studies would be managed by the Connecticut Department of Transportation and coordinated with the CRCOG and Hartford City Council.

Court Affirms that Flashing Mode During Traffic Signal Malfunction Does Not Replace Duty to Maintain Signals to Operate in Normal Mode

The District Court of Appeal of Florida recently reversed a trial court decision to award summary judgment to the city of Boca Raton, FL, after a motorist was injured crossing at an intersection where the traffic signal had defaulted to “safe mode”.

Background: Appellant had sued the driver and owner of the vehicle involved in the collision, and the city of Boca Raton, for negligence resulting in injuries to her. She alleged that city had negligently maintained the traffic control device at the intersection since the device had failed several times prior to the accident and the city had failed to make the necessary repairs. She further alleged that the failure to have a functioning traffic control device, which stopped traffic on one street while the traffic on the other street proceeded, was the proximate cause of the accident.

City moved for summary judgment on issues of sovereign immunity, negligence and proximate cause. It contended its decision to control intersections with traffic signals in safety mode was protected by sovereign immunity as it was a planning decision; that plaintiff could not establish that it had been negligent as the flashing traffic control was not defective; and finally that plaintiff could not establish that the flashing light was the proximate cause of the accident.

The trial court granted the motion for summary judgment on the third ground only, ruling that the flashing traffic light was not a proximate cause of the accident. It did not address the issue of sovereign immunity. Plaintiff then appealed.

The district court of appeals held that:

City’s alleged failure to properly maintain the traffic light was an operational, rather than a policy, decision and thus city was not entitled to sovereign immunity; the fact that the traffic light defaulted to a “safe mode” did not relieve city of liability for any negligence in maintaining it; and a triable issue existed as to whether city’s alleged negligent failure to maintain the traffic light was the proximate cause of the collision.

Accordingly it reversed the trial court ruling and remanded the case for further proceedings.

Regarding the issue of whether the decision to control the intersection with a flashing light is a policy decision, or an operational one, the appeals court reaffirmed that discretionary, judgmental, planning-level decisions by the government continue to be immune but immunity for operational decisions is waived. It reasoned that planning-level functions are generally interpreted as those requiring basic policy decisions, while operational level functions are those that implement policy. It cited previous cases which had established that maintenance does not involve broad policy or planning decisions, but is an operational level activity.

It found that a duty at the operational-level arises to warn the public of, or protect the public from, a known danger. The failure to fulfill this operational-level duty is, therefore, a basis for an action against the governmental entity.

In the case at hand, the city had been called twice just prior to the accident to the same large intersection (with six lanes of traffic in all directions) as a result of the traffic control devices going to flashing red and flashing yellow mode. The first fault occurred the day before, and the second fault occurred earlier on the day of the accident. Each time, the city simply reset the light and did not change the monitor responsible for tripping the lights into flashing mode. No one determined why the fault occurred. After the accident, the city replaced the monitor.

The appeals court found that the city exercised a planning-level decision in designing the intersection and the provision for and type of traffic signals. However it concluded that the inclusion of the “safe mode” was merely the city’s method of providing a warning of a known dangerous condition when the planned traffic control device malfunctioned and as such, it fulfilled an operational duty to warn, not a planning-level decision.

Regarding appellant’s claim that the city’s failure to maintain an existing traffic control device was the proximate cause of her injuries, the court found the operational duty of the city to maintain existing traffic control devices and to warn of known hazards, is analogous to the duty of a landowner to a business invitee. It noted that a landowner may be required to provide more than a warning, since reasonable care requires taking all of the circumstances into account.

It held that the record did not conclusively refute the allegations that city had negligently failed to repair the malfunctioning device. In a space of thirty-six hours prior to the accident, the traffic control device malfunctioned three times, defaulting to the flashing mode. It found that while the city maintained that the flashing yellow light did not malfunction, that was not the issue. Rather, the issue was whether all the traffic control devices were maintained and functioning as designed by the city so as to control the large intersection.

It found that it was not the flashing mode which appellant alleged was the cause of her accident, but the failure of the traffic signals to function as intended by the city in normal operation.

Further, that it was surely foreseeable that any driver entering such a large intersection, controlled by only flashing yellow in one direction and flashing red in the other direction, might proceed across the intersection and collide with another vehicle.

Finally, it found that the negligence of either or both drivers could not be said to be intervening, superceding causes of the accident, thereby relieving the city of any liability as a matter of law.
Oregon Gets Federal Funds for Fast Charge EV Stations

Will Complement The EV Project and Green Highway Initiative

U.S. Secretary of Transportation Ray LaHood recently announced that the Oregon Department of Transportation’s Electric Vehicle (EV) Corridor Project will receive $2 million in TIGER II grant funds to provide EV fast charge stations in that state. The TIGER II grant program, a competitive grant program funded by Congress in the 2010 federal budget, provides $600 million to important transportation-related projects across all modes. The EV Corridor Project is part of Oregon’s effort to deploy a robust charging infrastructure in Oregon to encourage rapid adoption of electric transportation. The fast charge stations will be deployed in communities throughout northwest Oregon, as well as communities on major travel corridors and key destinations, including US 26, I-84, US 20, OR 18, OR 99W, and US 101.

Fast charging allows rapid battery recharge for electric vehicles. Typically, it would provide up to 80-percent recharge in 20 to 30 minutes. These charging stations will have a 480 volt, three-phase connection with direct current (DC to DC) technology. Because EV drivers would have to wait for charging, the Oregon Department of Transportation (ODOT) will target host sites with commercial enterprises that offer services such as restaurants or convenience stores.

Asked how many fast charge stations are planned, ODOT’s Innovative Partnerships Project Director Art James told UTM that ODOT had requested more than $3 million in Tiger II funding, but only received $2 million. “We have to see how far we can make the money go for creating an effective network,” he said. Criteria that ODOT will consider in selecting the final sites include the availability of a commercial host (such as a shopping center or restaurant), the location of the power supply, the cost of extending power to the site, the availability of lighting, and the availability of an attendant.

TIGER funds will be used to extend the travel options of EV drivers to parts of the state that are underserved by The EV Project, a Recovery Act-funded project already underway in Oregon in partnership with the San Francisco-based company, ECOtality (formerly eTeC of Phoenix). ECOtality is receiving $130 million in federal stimulus funds to study electric vehicle usage in six states and Washington, D.C. The EV Project’s goal is to deploy EV charging stations and analyze their use and the behavior of EV drivers to guide adoption of EV vehicles throughout the country. In Oregon, the EV Project will deploy 1100 “Level 2” charging stations (240 volts at 30 amps) in Portland, Salem/Keizer, Corvallis/Albany, and Eugene/Springfield. These and the additional charging stations funded by the TIGER grant will allow EV owners to travel outside their home communities, eliminating the “range anxiety” that has made it difficult to deploy electric vehicles.

In planning for the TIGER II grant, ODOT has worked closely with the EV Project. ECOtality is partnering with Nissan North America with a target of deploying 1,000 of Nissan’s “LEAF” electric cars in Oregon and installing as many as 2,500 charging stations at homes and businesses that purchase the LEAF and participate in the program. James said that more than 700 homes and businesses have already contracted for the Leaf and that Nissan has shared that information with ODOT. ODOT has contacted these participants to get input on where to site TIGER II-funded charging stations.

Asked if The EV Project is working with other EV manufacturers such as GM, James said that an MOU was signed with Nissan in 2008, while GM had a later entry to the project. But, he added, both Nissan North American and General Motors/Chevrolet are partners in the Project. Drivers of the Nissan LEAF and the Chevrolet Volt who participate will be provided with a residential charger free. Most if not all of the costs of installation will be paid for by The EV Project.

In addition, the TIGER II grant is intended to advance the “Green Highway” initiative, a cooperative effort of the states of California, Oregon, Washington and the government of British Columbia. This initiative is aimed at making the I-5 West Coast Green Highway a national model for sustainable transportation infrastructure. The partners are working with the private sector and other agencies to lay the groundwork for a smooth and rapid shift to the
NYC to Use Zipcar for Car-Share Program for City Employees

Could Save More Than $500,000 Over Four Years

New York City’s Mayor Michael R. Bloomberg, Deputy Mayor for Operations Stephen Goldsmith, and Transportation Commissioner Janette Sadik-Khan have announced the start of the city’s first-ever car-share program for city employees. It will enable employees at the city’s Department of Transportation to share use of dedicated Zipcar vehicles for daily official business. Those vehicles will also be made available to the general public on evenings and weekends.

Under the one-year pilot program, 300 employees will share 25 vehicles through a contract with Zipcar. The pilot could save more than $500,000 over four years in reduced costs for vehicle acquisitions, fuel and maintenance.

In the pilot, Department of Transportation personnel will use 23 hybrid vehicles and 2 mid-sized vans to carry out a variety of responsibilities related to the planning, operation, maintenance and repair of the city’s streets, sidewalks, bridges and other infrastructure, as well as to attend meetings not accessible by public transportation. DOT’s Lower Manhattan fleet will be reduced by nearly 30% through this initiative, the agency said in early October. Additionally, the 57 agency vehicles will be reassigned, replacing older, less fuel-efficient vehicles in DOT’s citywide fleet.

A Zipcar overlooking NYC. (Photo: Courtesy of Zipcar)

Under the pilot, car-share vehicles – owned and maintained by Zipcar – will be stored at several private garages in Lower Manhattan, reducing the number of city vehicles using on-street parking. After 6:00 p.m. on weekdays and on weekends, the vehicles will be made available for public use by Zipcar, providing more New Yorkers the opportunity to benefit from car sharing. The Zipcars will be available to city employees in the pilot from 7:00 a.m. to 6:00 p.m. on weekdays, though only between five and 10 of the 25 Zipcars will be available during morning and evening rush hours, to encourage employees to drive at times when roads are less congested.

Successful municipal car-share systems in Washington, D.C. and Philadelphia were reviewed during the creation of this program. Zipcar was selected as New York’s first and only car-sharing provider through a competitive bid process.

For more information, visit http://www.nyc.gov/html/dot/html/home/home.shtml, or contact NYC DOT spokesman Scott Gastel at (212) 839-4850 or Zipcar spokesman TK Hall at (617) 520-7285.

Continued from Page 8

Oregon Gets Federal Funds for Fast Charge EV Stations

widespread use of vehicles that run on sustainable fuels. The goal, James said, is to have sufficient EV charging capacity to drive from British Columbia to Baja, California.

James said that ODOT is working closely with Washington State to gather information regarding available quick charge equipment. While Oregon will use TIGER II grant funding to purchase the equipment for quick charge stations, Washington State has received funding from its State Energy Program. After assessing the information, Oregon and Washington will issue a bi-state RFP. ECOTality currently leads the market but other firms want to get into this area, which is poised for rapid growth. Therefore, James said, “ours will be a competitive process.”

James pointed out that, earlier this year, the Society of Automotive Engineers adopted a common plug or connector for all EVs. He said that interoperability will certainly help spur the creation of the EV charging infrastructure and the rapid acceptance of EVs.

For more information, visit http://www.oregon.gov/ODOT/HWY/OI PP/inn_ev-charging.shtml, http://www.theevproject.com, and http://www.westcoastgreenhighway.com/electrichighways.htm, or contact Art James at (503) 986-3858 or by e-mail at art.james@odot.state.or.us.
FTA to Change Mode Classification for National Transit Database

Agency Seeks Public Comments on Changes

The Federal Transit Administration (FTA) is seeking comments on changes to the National Transit Database (NTD) reporting requirements, including amendments to the 2011 Urbanized Area Annual Reporting Manual. The changes were published in the Federal Register, Vol. 75, No. 192, October 5, 2010. They also appear on the FTA website. Comments must be received on or before December 6, 2010.

More than 700 transit providers in urbanized areas report to the NTD through an Internet-based reporting system. Each year, performance data from these submissions are used to apportion over $6 billion of FTA funds under the Urbanized Area Formula (Section 5307) Grants and the Fixed Guideway Modernization Grants Programs. The FTA annually refines reporting requirements in order to improve the NTD system and be responsive to transit system needs.

Among the FTA’s proposed changes to the NTD reporting requirements are new modes of operation. Almost all data is reported to the NTD on the basis of modes of service. Mode of operation is useful for organizing transit data because it facilitates the creation of national benchmarks and performance peer-groups for systems of similar characteristics. To recognize that modes have changed over time, FTA proposes creating four new modes of operation: Bus Rapid Transit (RB), Commuter Bus (CB), Streetcar Rail (SR), and Hybrid Rail (YR). These definitions may not apply to other areas where definitions are established by law, rule, or regulation.

Bus Rapid Transit (RB): This mode will be for fixed-route bus systems that either (1) operate their entire routes predominantly on fixed-guideways (other than on highway HOV or shoulder lanes, such as for commuter bus service) or (2) that operate entire routes of high-frequency service with the following elements: substantial transit stations, traffic signal priority or pre-emption, low-floor vehicles or level-platform boarding, and separate branding of the service. High-frequency service is defined as 10-minute peak and 15-minute off-peak headways for at least 14 hours of service operations per day.

NTD Program Manager John D. Giorgis told UTM that “fixed route bus systems that operate their entire routes predominantly on fixed-guideways” is a reference to the legal definition of fixed guideway (US Code - Title 49: Transportation Sec. 5302 – Definitions), which means a facility with a separate right-of-way for the exclusive use of mass transportation and other high occupancy vehicles. Giorgis said that Los Angeles’s new “Orange Line” busway – an approximately 14-mile route almost entirely on an exclusive former railway alignment – is an example.

FTA officials said that they intentionally established a “high bar” for defining BRT, one that does not include all bus operations with some BRT features. This, they said, should create a clear cadre of BRT services that will be useful to researchers, transit managers, etc. without necessarily forcing transit agencies to subdivide their data from integrated bus operations into separate “motorbus” and “rapid bus” NTD reports.

Giorgis also explained the decision to use the acronym RB rather than the widely accepted BRT. When the system was set up, all modes were given two letter acronyms in the NTD system, he said. TB is trolley bus, for example. Giorgis agreed that RB would not replace BRT outside of the NTD reporting requirements.

Commuter Bus (CB): This mode will be for fixed-route bus systems that are primarily connecting outlying areas with a central city through bus service that operates with at least five miles of continuous closed-door service. This service typically operates using motor coaches, and usually features peak scheduling, multiple-trip tickets, and multiple stops in outlying areas with limited stops in the central city.

Streetcar Rail (SR): This mode is for rail transit systems operating entire routes predominantly on streets in mixed traffic. This service typically operates with single-car trains powered by overhead catenaries and with frequent stops.

Hybrid Rail (YR): This mode is for rail transit systems primarily operating entire routes on the national system of railroads, but not operating with the characteristics of commuter rail. This service typically operates light rail-type vehicles as diesel multiple-unit trains (DMU’s). These trains do not meet Federal Railroad Administration standards, and so must operate with temporal separation from freight rail traffic.

FTA officials said the new modal definitions should provide greater clarity to NTD products. Currently, Motorbus (MB), NTD’s single modal grouping, lumps together traditional transit bus service, BRT service, and commuter bus service. This skews the national averages for traditional transit bus operators looking for national benchmarks, and makes it harder for BRT or commuter bus service operators to identify “peers” in NTD data. Similarly, the current Light Rail (LR) mode lumps together everything from streetcar service to Dallas Area Rapid Transit. Finally, the Hybrid Rail (YR) mode would recognize the unique operating characteristics of light rail service on tracks that are part of the national system of railroads, such as the NJ Transit River Line (currently Light Rail) and the Austin Capital MetroRail (currently Commuter Rail). It would provide a single grouping separate from other “traditional” light rail operations and pure commuter rail operations.

FTA expects that many systems reporting these new modes will make a transition of 100% of their service from the existing Motorbus (MB) or Light Rail (LR) modes to the new mode. For systems that will need to split their service between an existing mode and a new mode, FTA will grant waivers from this requirement for up to two years.

Other FTA proposed changes include circumstances and criteria for reporting vanpool data; clarifying some definitions of aerial tramway and rail-related reporting terms; consistent reporting procedures for transit agencies with nine or fewer ve-

Please turn to Page 11
DDOT Latest to Adopt a Complete Streets Policy

The District of Columbia’s Department of Transportation (DDOT) has issued a new Complete Streets policy to guide the development, execution and evaluation of future DDOT projects and ensure that both bicyclist and pedestrian level of service be considered in all significant roadway projects. The policy, signed by Director Gabe Klein in late October, says “All transportation and other public space projects shall accommodate and balance the choice, safety, and convenience of all users of the transportation system…” and directs DDOT employees to give equal weight to pedestrians, bicyclists and transit users as well as motorists.

“This policy really formalizes the changes we’re already started to make at DDOT to ensure all modes of transportation are equally represented,” said Klein. “This approach is critical to ensure our streets are safe for everyone and to create more livable and sustainable communities.”

With this new policy, the District of Columbia joins the adjacent states, Maryland and Virginia, in considering all modes in transportation planning. Maryland has a Complete Streets policy, which states that “access to and use of transportation facilities by pedestrians and bicycle riders shall be considered, and best engineering practices regarding the needs of bicycle riders and pedestrians shall be employed, in all phases of transportation planning, including highway design, construction, reconstruction, and repair as well as expansion and improvement of other transportation facilities.” Virginia has a Department of Transportation Policy for Integrating Bicycle and Pedestrian Accommodations, which provides the framework for accommodating bicyclists and pedestrians in the planning, funding, design, construction, operation, and maintenance of Virginia’s transportation network to achieve a safe, effective, and balanced multimodal transportation system.

The DC Complete Streets Policy was one of the goals set out in DDOT’s two-year Action Agenda, which was released in February. The following is the text of the policy:

“I. Policy

“a. The District’s transportation net-
work as a whole shall accommodate the safety and convenience of all users, recognizing that certain individual corridors have modal priorities. While these priorities should remain and be encouraged along specific corridors, connectivity throughout the network for users of all modes is essential. Examples of modal priorities include, but are not limited to, residential streets, green streets, school routes, and corridors that are important to transit, freight, commuter traffic, and retail;

“b. All transportation projects shall reflect the land-use, transportation, and green space needs of the city-wide transportation network, be sensitive to its various contexts, and should improve, not diminish, network connectivity;

“c. All transportation and other public space projects shall accommodate and balance the choice, safety, and convenience of all users of the transportation system including pedestrians, users with disabilities, bicyclists, transit users, motorized vehicles and freight carriers, and users with unique situations that limit their ability to use specific motorized or non-motorized modes to ensure that all users can travel safely, conveniently and efficiently within the right of way;

“d. Pedestrian, bike, and transit Level of Service (LOS), in addition to vehicle measurements, shall be evaluated to ensure proposed alternatives balance, as appropriate, the needs of all users of the right of way;

“i. The planner or designer shall calculate and design for an appropriate combination of LOS that accommodates all users;

“ii. The planner and designer shall also refer to previously established plans to ensure consistency;

“e. Wherever possible, projects should help DDOT achieve goals as set by the Action Agenda or subsequent strategic plan;

“f. Improvements to the right of way shall consider environmental enhancements including, but not limited to: reducing right-of-way storm water run-off, improving water quality, prioritizing and allocating sustainable tree space and planting areas (both surface and subsurface), reusing materials and/or using recycled materials, and promoting energy conservation and efficiency wherever possible;

“II. Procedures

“a. The aforementioned policies shall be employed in all transportation planning, design, review, operations, major maintenance projects (such as milling and overlay), new construction and reconstruction projects, except where prohibited by federal and District law (such as interstates, non-motorized trails);

“b. Routine daily maintenance and operation activities (such as potholes and cracked ceilings) are specifically exempt from this Policy. Any other exceptions require written justification, documentation, and approval by the DDOT Director or Delegate. Exceptions may be granted based upon documented safety issues, excessive cost, or absence of need.”

For more information, visit http://ddot.dc.gov/DC/DDOT/About+DDOT/News+Room/Public+Notices/DDOT+Issues+Complete+Streets+Policy or contact John Lisle at (202) 671-2004 or by e-mail at John.Lisle@dc.gov.

Continued from Page 10

FTA to Change Mode Classification for National Transit Database

hicles; simplified financial balance sheet reporting; rules of attribution for transit agencies operating in more than one urbanized area, or in both urbanized and rural areas; and procedures for responding to changes in urbanized area status that may occur during the 2011 NTD reporting year. Also, FTA announced that it is immediately suspending data collection of personal security incidents on the S Form in the Safety Security Module.
USDOT Announces $18.7 Million in Transportation Research Grants

On October 13, 2010, U.S. Department of Transportation Secretary Ray LaHood announced more than $18.7 million in grants as part of the USDOT’s Research and Innovative Technology Administration (RITA). The grants were made to 11 University Transportation Centers (UTCs) that are using new technologies and developing innovative approaches in transportation and maintain partnerships with regional, state, and local transportation agencies. The grants were part of RITA’s annual $81 million in annual funding to 136 colleges and universities conducting transportation research and training.

The following is a list of the grant recipients, amounts, and projects to be funded:

The Infrastructure Technology Institute (ITI) at Northwestern University in Evanston, Illinois
- **Grant amount:** $3,324,400
- **Email:** iti@northwestern.edu
- **Website:** http://www.iti.northwestern.edu/
 - Advancing research and education in integration of land use and transportation and support for healthy communities.
 - Research and education with a focus on transportation modeling, sustainable cities, and electric vehicles.

The Oregon Transportation Research and Education Consortium (OTREC)
- **Grant amount:** $3,243,400
- **Website:** http://www.otrec.us/
- **Email:** askotrecc@otrec.us
 - Advancing research and education in integration of land use and transportation and support for healthy communities.
 - Research and education with a focus on transportation modeling, sustainable cities, and electric vehicles.

The National Center for Freight and Infrastructure Research and Education (CFIRE) at University of Wisconsin-Madison
- **Grant amount:** $3,243,400
- **Website:** http://www.wistrans.org/cfire/
- **Email:** gwaidley@engr.wisc.edu
 - Funding research on freight-related issues, multi-modal efficiency, transportation policy, traffic analysis, air quality, public health, sustainable construction materials and processes, economic impact of goods movement, and increased capacity of the freight and passenger system.
 - Leading the development of a regional freight plan for the 10-state Mississippi Valley Freight Coalition.

The University Transportation Center (UTRC) based at the City University of New York
- **Grant amount:** $2,082,800
- **Website:** http://www.utrc2.org/
- **Email:** cte_index.htm
 - Funding research, education, and technology transfer addressing planning and management of regional and national transportation systems, as well as stewardship and management of New York City region transportation systems.

The Georgia Transportation Institute/University Transportation Center
- **Grant amount:** $925,700
- **Website:** http://www.utc.gatech.edu/
- **Email:** cte_email@ncsu.edu
 - Funding research, education, and technology transfer to mitigate impact of surface transportation on the environment.

The Midwestern Transportation Consortium, located at Iowa State University
- **Grant amount:** $925,700
- **Website:** http://www.intrans.iastate.edu/mte/index.htm
- **Email:** shallmar@iastate.edu
 - Funding research efforts on infrastructure improvements and use of data management systems to reduce crashes.
 - Funding outreach activities encouraging youth to explore transportation careers, including an online teen magazine called Go!

The Eastern Seaboard Intermodal Transportation Applications Center at Hampton University
- **Grant amount:** $463,400
- **Website:** http://biz.hampton.edu/esitac/
- **Email:** kelwyn.dsoouza@hampton.edu
 - Funding research to enhance regional intermodal transportation systems by improving safety and efficiency while minimizing environmental impacts and managing growth.

The Nevada Transportation Research Center (NUTC) at the University of Nevada, Las Vegas
- **Grant amount:** $463,400
- **Website:** http://nutc.unlv.edu/
- **Email:** pushkin@unlv.edu
 - Funding matched by Nevada DOT and focusing on developing new theories, software, hardware tools, and online systems especially relevant to the Nevada environment.

The Center for Transportation and the Environment (CTE) at North Carolina State University
- **Grant amount:** $462,900
- **Website:** http://itre.ncsu.edu/cte/
- **Email:** cte_email@ncsu.edu
 - Funding research, education, and technology transfer to mitigate impact of surface transportation on the environment.

Please turn to Page 13
FHWA Seeks Solicitations for Value Pricing

On October 19, the Federal Highway Administration released a solicitation for proposals for a Value Pricing Pilot Program (VPP) for the fiscal years 2010 and 2011. According to the solicitation, value pricing as a concept encompasses a wide variety of strategies to manage highway congestion including tolling, congestion pricing, mileage-based car insurance, parking pricing, variable usage fees, peak period price increases, or other means of using pricing to influence travel to the end of reducing congestion, increasing efficiency, reducing greenhouse gas emission, and generating revenue. The overall objective of the VPP is support for state and local government efforts to establish local VPP programs and execute, monitor, and evaluate the effects of value pricing. As the solicitation states: “The effects of interest include impacts on congestion, travel behavior, traffic volumes, transit ridership, air quality, and funding for transportation improvements.” Additionally the solicitation calls for proposals that incorporate significant pricing mechanisms designed to substantially advance these objectives.

With regard to tolling and non-tolling projects, the solicitation states “[the] FHWA is interested in tests that advance the state of the practice in behavioral economics. Specifically, applications are sought that strive to improve the understanding of the ways that the structure, timing and salience of pricing, and how payments themselves are handled, affect responses to pricing.”

To the ends of the overall goal, applicants can apply for tolling authority, funding, or both. Eligible applicants include state or local governments and public authorities such as toll agencies. The solicitation opens the door to for-profit, non-profit, and private tolling authorities through partnership with government transportation agencies, and preferably state departments of transportation.

According to the solicitation, Congress authorized $12 million for FY 2010 to be made available for the VPP program, as well as $3 million for the program in FY 2011, and may choose to authorize additional funds for FY 2011. According to statute, at least 25 percent of the VPP funds must be spent on projects that do not involve highway tolls.

Regarding non-tolling projects, the solicitation states the FHWA is seeking tests “that will substantially improve livability in an area and advance environmental sustainability in a major way, either directly through the benefits the project itself brings, or by demonstrating especially promising strategies such that their implementation will likely be replicated broadly.” Examples that the solicitation lists that meet this criteria include: pay-per-mile or pay-per-minute car insurance, innovative parking pricing strategies that bring down congestion, actuarial studies of the potential benefits of the pay-as-you-drive pricing models, tests of previously untested pricing protocols, citywide surcharges for entering or exiting parking facilities during near peak travel periods, parking cash-out or laws requiring employers to offer cash to employees in lieu of subsidized parking, dynamic ridesharing and single-trip carpooling with transportation pricing.

The proposals will be evaluated according to six core outcome measures and pre-implementation proposals according to their projected effects on the measures. The first core measure is livability and the extent to which the project enhances livability by improving neighborhood design, opportunities for traffic calming, more space for pedestrians and bicyclists, faster bus travel and better bus stop designs, and directing revenue from pricing to infrastructure improvements for pedestrians, bicyclists, transit, and ridesharing. The second core measure is sustainability. The proposals will be evaluated according to the extent forecasted reductions in traffic reduce greenhouse gas emissions and dependence on fossil fuels; reduce air, water, and noise pollution; support transit-oriented land development; and fund multimodal transportation systems. The third measure is equity. Proposals will be evaluated on the extent to which costs and benefits are distributed such that low-income travelers or other disadvantaged groups pay less on average for their travel or derive better travel value for the same cost, as well as accommodating and addressing the concerns of these groups.

Regarding deadlines, the solicitation states applications for tolling authority alone may be submitted at any time. Formal grant applications must be submitted before January 18, 2011. Grant applicants may submit an optional “sketch” or draft proposal by December 3, 2010, which will be reviewed. Feedback will be provided for the formal grant application.

General and technical questions related to the VPP program and the development of pricing projects involving tolls can be directed to Ms. Angela Jacobs, FHWA Office of Operations, (202) 366-0076, angela.jacobs@dot.gov. For technical questions related to the development of pricing projects not involving tolls, contact Mr. Allen Greenberg, FHWA Office of Operations, at (202) 366–2425, allen.greenberg@dot.gov.

Continued from Page 12

USDOT Announces $18.7 Million in Transportation Research Grants

The Michigan Ohio University Transportation Center (MIOH UTC) $462,900
Website: http://mioh-utc.umd.edu/
Email: hanifi@umd.edu
- Funding research to examine the impact of proposed transportation projects on traffic and economy of “mega-region” in southeast Michigan, northwest Ohio, and southwest Ontario.
- Research on bio-fuels.
- Outreach activities to K-12 students.

Intelligent Cities Initiative Aims to Gain and Organize Data About Urban Life

National Building Museum Partners with TIME to Reach Public

The National Building Museum has launched Intelligent Cities, a one-year initiative aimed at gathering information about the public’s view of urban life and organizing the data so that planners can make cities better. It is a National Building Museum project in partnership with TIME, supported by IBM, and funded by the Rockefeller Foundation.

The first step in the Intelligent Cities initiative is a six-month outreach campaign aimed at reaching people and getting their views, said Museum spokeswoman Tara Miller. The initiative will contact millions of people through advertisements in TIME magazine and on TIME.com. The public outreach campaign features a series of polling questions that ask people to reflect on the quality of their lives in cities. How did you decide where to live? How is the commute? Would you make the same decision today? The questions will be posted in TIME starting with the November 1 issue and on Time.com.

Miller told UTM that the initiative will analyze the data and use public programming to present information in new ways. The initiative doesn’t aim to promote any specific behavior, she said. Rather the goal is to obtain new information and to organize it, learn from it and use it to make cities thrive. Added Scott Kratz, the manager of the initiative, “We are not trying to tell anyone where they should live or how they should live. We just believe that informed people make better decisions.”

The initiative will encourage bold and provocative thinking on the part of experts about how to make cities better. For example, Intelligent Cities will make connections between the size of our homes and the energy we consume as a nation, walkable neighborhoods and our health, and where we work and our infrastructure. These insights may surprise us and change our perceptions and, perhaps, even our behavior.

“Technology and access to information has reached a point where individuals can generate data and think deeply about where they live,” said National Building Museum President and Executive Director Chase W. Rynd in a press release. “Through Intelligent Cities, we have the means to share their viewpoints with experts in the design and building industries so that there is a true give and take between constituencies. Experts need input from the community and can use it to make the planning and design process more open, participatory, and democratic.

The one-year initiative will include research and consultation conducted by the Museum and an advisory committee of experts, a public forum in June 2011, and a publication in fall 2011.

Phase 1: From now through March 2011, public polling questions will appear in promotional advertising in TIME and www.time.com and be shared broadly through social media. The poll, at http://go.nbm.org/intelligentcities, is open to everyone. Poll results, essays, videos, and other related content are also online at www.nbm.org/intelligentcities. Throughout the year, TIME and www.time.com also will use print and online editorial reports to explore the strategies, systems, and innovations being leveraged to build the intelligent city of today.

The first polling questions focus on the home: why you chose your current house and if you would prioritize the same things if you had the choice to make over again. The second polling questions will focus on whether you lived in walking or biking distance to work in the past and/or in the present. Subsequent polls will focus on the neighborhood, community, city, region, and country. The museum is asking these questions because it wants the public to think about what drives their decisions and what intended or unintended consequences those decisions might have. For example, what is the relationship between transportation — whether people live close enough to walk or bike to work — and health?

The first advertisement includes an infographic demonstrating the connection between the size of our homes and how much energy we use. It will show that our heating and cooling systems have become much more efficient over the last 60 years, but our homes have ballooned in size even as household populations has shrunk, which offsets that energy efficiency. The second one examines the percentages of children who arrived at school by walking, biking or by car in 1969 and in 2009 and reports increases in childhood obesity rates.

Phase 2: The museum has invited an interdisciplinary and geographically diverse group of advisors who are leaders in their fields to help guide Intelligent Cities. On January 10, 2011, the advisors will meet at the museum to reflect on the initial responses of the public outreach campaign, add commentary, and help plan for the Intelligent Cities public forum to be held in June 2011. Prize-winning author, professor, and architecture critic Witold Rybczynski will deliver a talk based on his upcoming book—“Makeshift Metropolis: Ideas about Cities”—in a public program at the museum.

The museum will convene a one-day forum in June 2011 to explore the intersection of information technology and cities. It will urge public opinion leaders, government officials, and the public to think about how to use existing and emerging technologies and data to improve urban life. It will build on the public information campaign, revealing new data by sharing the public responses. The forum will take place at the National Building Museum in Washington, D.C. and be broadcast live on the web.

The museum will release a publication in the Fall 2011 about information technology and the city. It will summarize the ideas, theses, and proposals that emerge from the discussions at the forum and public outreach.

The National Building Museum expects to open an interactive exhibition based on Intelligent Cities’ themes in 2013.

For more information, visit www.nbm.org or contact Tara Miller at (202) 272-2448, ext. 3201 or by e-mail at TMiller@nbm.org.
This Month’s Survey Results (Survey 1)

Evaluation and Prioritization of Transportation Projects

Last month The Urban Transportation Monitor conducted a survey among transportation professionals to obtain information and opinions about Evaluation/Prioritization Techniques. Transportation professionals in 400 cities, counties, state DOTs and transit agencies were contacted via email. Replies were received from 36 organizations for a return rate of 9%. The results of the survey are published here.

How did you involve the public in your prioritization/evaluation of projects? Responses are listed in no particular order.

- We regularly solicit comments from riders - in newsletters, at various public meetings, etc. We have discussed the Service Investment Strategy at numerous Board meetings (open to the public), involved city/county staff, and will have public open houses for the solicitation of input.
- Strategic plan initiatives are included in annual budget, and the public is involved in budget process. Also strategic plan initiatives are components of the regional long-range plan.
- We have public meetings/hearing on the long-range transportation plan for the next 25 years filled with projects at a planning level. Then we have public meetings/hearing on the more solid project level for the five year plan. When we start a design, we typically have three public meetings on each project to get consensus on the design. Lastly we have a public meeting after a contractor has gotten the bid to allow the public to get to know their contractor.
- Surveys, utilization, public hearings, stakeholder input.
- Through project advisory committees, general public meetings and open houses and presentations to stakeholder organizations.
- Series of community forums.
- We had an Evaluation Committee. This allowed for public input into the process, which is a more objective approach to funding projects with public dollars than just leaving it to MPO’s, cities and so on, which typically support local needs before area wide or regional needs.
- Public meetings
- The public review document for the TIP includes a list of projects recommended to receive funds and a list of projects proposed but not recommended for funding. This allows the public to comment on all projects that were considered for funding.
- This is done by the proposers as they develop their applications. We consider whether there is support of the concept vs. financial support of the project. The latter garners additional points in the scoring process.
- We involve the public in developing our annual work program (known as the State Transportation Improvement Program-STIP). The public (and elected officials) get to review/comment on/suggest changes to the STIP. In developing our prioritization tool, we involved the state’s MPOs in an effort to gain additional insight/input/thoughts on what to consider.
- The key component of our process was involving the public through the whole process thus creating a transparent process and accountability with our stakeholders.
- The Community Objectives are drawn from the work of HUD-DOT-EPA and its Livability Principles, Interagency Partnership for Sustainable Communities, Community Workshops, Online Surveys, and Envision Central Texas (ECT). Below each Objective is an Outcome, which defines the Objective and was included in the presentation of the Objectives to the community for prioritization.
Evaluation/Prioritization Techniques Applied (as provided by respondents)

<table>
<thead>
<tr>
<th>Technique (Type of Agency Applying Technique)</th>
<th>Description of Technique</th>
<th>Main Advantages</th>
<th>Main Disadvantages</th>
<th>Satisfactory Rating of Technique by Respondents (Out of 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road User Safety Approach (City)</td>
<td>Once a roadway hazard is detected, review traffic crash data for the last five years. Evaluate the best mitigation measure to correct most if not all of the reviewed traffic crashes.</td>
<td>Restricted to addressing the traffic safety enhancements.</td>
<td>It can be costly but sound.</td>
<td>9</td>
</tr>
<tr>
<td>Austin Strategic Mobility Plan - Project Prioritization Process (City)</td>
<td>The Austin Strategic Mobility Plan (ASMP) sets direction for the city of Austin for near-term and long-term transportation investments and a comprehensive mobility network that offers improved alternatives to driving alone. The Gap Analysis provides direction to establish the objectives, outcomes, and subsequent MOEs to prioritize and rank immediate gap solutions in the transportation system. It also serves to lay the framework for strategic corridor plans, area plans, regional projects, and ultimately guide future priority decisions for funding.</td>
<td>The ASMP community outreach program solicited feedback on these Objectives and Outcomes in order to assess the community’s values and their relative importance. Following each Objective and Outcome are the individual criteria, or Measures of Effectiveness (MOEs), used to score how well each gap, solution, and project meets the intended goal.</td>
<td>The number of persons who participated in the public involvement process was small compared to the total population of the Austin area; therefore, those who did participate were a self-selected group. Some in the public feel that certain MOEs are missing or favor certain modes.</td>
<td>7</td>
</tr>
<tr>
<td>Balancing pavement condition vs development needs vs safety needs (City)</td>
<td>We have a pavement management system that ranks the condition of arterial streets. We have petitions submitted to the city by developers who want improved paved streets to continue their development. And lastly, we have a safety system that ranks intersections with the highest safety needs. We look mainly at these three areas to decide where our funding goes.</td>
<td>We have a group of planners and engineers who consider all of this information and we openly discuss and prioritize the projects. The biggest advantage is we all agree at the end on the priority, and we have a justification on why we selected and ranked the projects the way we did.</td>
<td>Politics always comes into play and at times can totally revamp the priorities. Our local government has a strong mayor and weak council, however, they all want their say in the projects.</td>
<td>7</td>
</tr>
<tr>
<td>Congestion Mitigation (City)</td>
<td>Review the roadway/traffic level of service for different roadway segments/intersection approaches and rank them from worse to best.</td>
<td>It provides better justification and utilization of the available funds.</td>
<td>It can be costly for some projects.</td>
<td>8</td>
</tr>
<tr>
<td>Traffic Safety Improvements (County)</td>
<td>Prioritize corridors by input from elected officials. Safety improvements by hazard identification.</td>
<td>High Hazard method is quantifiable.</td>
<td>The corridor method may not address the most pressing needs of the county.</td>
<td>7</td>
</tr>
<tr>
<td>Effectiveness-Productivity Analysis (MPO)</td>
<td>Calculate the subsidy per passenger boarding and boardings per hour for each route, service, or sub-portion as desired. Plot on a effectiveness-productivity chart. Group similar routes and services into classes. Set min.-max. standards.</td>
<td>Shows both the absolute and relative performance with standards of routes and services for comparative analysis.</td>
<td>None.</td>
<td>10</td>
</tr>
<tr>
<td>Prioritization Criteria Matrix (MPO)</td>
<td>Utilized our TAC, CAC, and BPAC to develop a weighted ranking criteria matrix.</td>
<td>It helps remove bias when you are working with two counties and 19 municipalities.</td>
<td>The scale that we currently are using is 1-5, so the project scores are too close together and projects don’t distribute enough.</td>
<td>2</td>
</tr>
<tr>
<td>Regional mode-neutral evaluation (MPO)</td>
<td>MPO and DOT cooperatively develop a program that covers the Transportation Management Area (TMA) and non-TMA areas of the region. Evaluation criteria have been established for use on all projects and for individual modes. MPO and DOT work with a technical committee to identify the highest priority projects and then seek to program the projects to various fund sources from the most restrictive to the least restrictive until all funds are programmed. Projects are selected based on how well they respond to the criteria. This allows for the identification of the best mix of projects regardless of jurisdiction. This approach has been in place since 2000 and is resulting in improved pavement and bridge conditions regionwide and the expansion of alternative modes.</td>
<td>Projects are selected based on how well they respond to the criteria. This allows for the identification of the best mix of projects regardless of jurisdiction. This approach has been in place since 2000 and is resulting in improved pavement and bridge conditions regionwide and the expansion of alternative modes.</td>
<td>It requires considerable time to evaluate each project proposal against all the criteria.</td>
<td>8</td>
</tr>
<tr>
<td>Preventive maintenance focus (MPO)</td>
<td>In 2006, MPO and DOT began soliciting Highway Preventive Maintenance and Element-Specific Bridge Preventive Maintenance projects. Since these projects are limited in scope, the existing evaluation criteria do not provide enough distinction between projects. A cost-effectiveness formula was developed for each mode. Projects are evaluated against the formula and ranked by the result.</td>
<td>It promotes the use of preventive maintenance efforts to extend the life of the facility at low cost compared to allowing the facility to deteriorate to the point of needing major rehabilitation or reconstruction/ replacement. Previous efforts essentially rewarded a lack of maintenance by providing federal funds to rebuild facilities.</td>
<td>TIP updates usually focus on new funding that is added to the end of the TIP period and can have a long lead time prior to adoption. Project sponsors have not necessarily been looking that far in advance for potential preventive maintenance projects. This can be somewhat alleviated by programming funding blocks for design and construction activities on projects to be identified at a later date.</td>
<td>8</td>
</tr>
</tbody>
</table>
Evaluation/Prioritization Techniques Applied (as provided by respondents)

<table>
<thead>
<tr>
<th>Technique (Type of Agency Applying Technique)</th>
<th>Description of Technique</th>
<th>Main Advantages</th>
<th>Main Disadvantages</th>
<th>Satisfactory Rating of Technique by Respondents (Out of 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Priority Formula - Preservation Projects (State DOT)</td>
<td>We use an enhanced priority formula as our selection technique for preservation projects. The formula takes data from our CANSYS database (geometric attributes), Pavement Management System and Bridge Management System and calculates a score based on need. The formula considers a number of different factors including traffic, trucks, LOS, geometric data, pavement condition, road condition, crash data and other variables to rates sections of roadway.</td>
<td>The main advantage of this method is that it looks it a number of variables to calculate a need score for each project. We have been using this technique for a number of years and our stakeholders are happy with this methodology.</td>
<td>N/A</td>
<td>9</td>
</tr>
<tr>
<td>Statewide Call for Projects (PTN) at TxDOT</td>
<td>In July-Aug the Public Transportation Division (PTN) at TxDOT releases a call for transit projects in multiple funding categories. Proposals are due in later Dec - early Jan. Staff reviews projects using weighted evaluation criteria specific to the type of funding that will be applied. Once there is a shortlist, negotiations may take place with proposers to address any concerns with the proposal.</td>
<td>We believe this benefits the transit community in that there are not sequential calls for proposals. It allows one application to be reviewed for multiple funding sources, and permits the department to switch funding among programs based on the availability of funds specific to the program. The timing of the call allows a project to begin on Sept. 1 using a known FTA appropriation.</td>
<td>The process has been in place for several years so some of the earlier kinks have been worked out. Staff knows the rhythm of the process and can build it into their work plans.</td>
<td>8</td>
</tr>
<tr>
<td>Project Prioritization (State DOT)</td>
<td>For large-scale capacity expanding projects we use a tool known as Project Prioritization. The Project Prioritization tool assigns a score (based on benefit/cost) of the project. We have different scoring scales for projects in our largest MPO area (Atlanta), other smaller MPOs and rural portions of the state.</td>
<td>The project prioritization technique is very technical and easily explained with data.</td>
<td>The process is very data focused and doesn't capture some project (especially bypass/new location roadways) benefits very well, thus under estimating the benefits.</td>
<td>7</td>
</tr>
<tr>
<td>Expansion Project Selection (State DOT)</td>
<td>We created a list of projects identified as regional priorities through a local consultation process and then evaluated these projects on 3 variables. We evaluated the projects on an engineering basis, we evaluated the economic impact of each project, and we then gave each project a local consultation score based on what we heard from our stakeholders and based on knowledge of our district staff. This process identified our 1st and 2nd tier projects. We then took this list of projects with identified scopes (i.e. passing lanes, expressway, freeway) and went to each region of the state and asked them to identify their top projects based on regional benefits and economic impacts of the the project. This process helped us determine our top tier projects and now KDOT will consider this input along with system condition, economic impact, geographic distribution and work already completed to make final selections. This is the first time we have used this process. We have not yet made final selections.</td>
<td>The main advantages of this process is that it is transparent to our stakeholders and allows them to help shape our transportation system. The technique also creates a lot of support around a group of projects. If your state economy tanks and revenues decline, it is important to have support around a group of projects because this equates to political support.</td>
<td>This process takes a lot of time, resources and commitment to accomplish.</td>
<td>10</td>
</tr>
<tr>
<td>Maintenance Projects (State DOT)</td>
<td>For roadway resurfacing/maintenance projects we are migrating to a combination identifying resurfacing needs based on a mixture of pavement conditions and traffic volumes (previously we focused predominantly on pavement condition).</td>
<td>We will identify the routes which serve the highest levels of traffic and also have maintenance needs-vs. focusing solely on pavement condition. For example, resurfacing a roadway with a score of 72, which carries 4,000 vehicles per day instead of resurfacing a roadway with a score of 75, which carries 100,000 vehicles per day.</td>
<td>To be determined, we are just now migrating to this new technique.</td>
<td>8</td>
</tr>
<tr>
<td>Technique (Type of Agency Applying Technique)</td>
<td>Description of Technique</td>
<td>Main Advantages</td>
<td>Main Disadvantages</td>
<td>Satisfactory Rating of Technique by Respondents (Out of 10)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Projects which support strategic initiatives of agency (Transit Agency)</td>
<td>Projects are reviewed in their relation to supporting the agency's strategic planning initiatives. Those projects which demonstrate a high return on investment and achieving the goals of the strategic plan are prioritized for funding. For example, to improve overall travel speed on arterial transit roads, priorities have been dedicated stops, far-side stop locations, transit signal priority.</td>
<td>Projects support the strategic plan.</td>
<td>Conflicting priorities with limited funding availability, conflicts within agency.</td>
<td>8</td>
</tr>
<tr>
<td>FTA Alternatives Analysis process (Transit Agency)</td>
<td>Evaluate alternatives based on ridership, capital and operating & maintenance costs and cost-effectiveness.</td>
<td>Provides quantifiable data to distinguish the alternatives.</td>
<td>FTA Transportation System User Benefit emphasizes travel time savings. However, recently FTA has proposed measures to incorporate other project attributes such as environmental improvements and mobility benefits to environmental justice communities.</td>
<td>7</td>
</tr>
<tr>
<td>Cost Effectiveness by Emissions reduced (Transit Agency)</td>
<td>Used while in California, and with more stringent air quality regulations imminent for Florida, cost effectiveness of projects by tons of lbs or pollution reduced is a fair and equitable manner to get the most bang for the buck. A standard of less than $20/lb is a beginning criteria as only the most effective projects such as alternative fuels, good signal timing, auto buyback and crushing rise to the top for funding.</td>
<td>The main advantage is that every project must be measured against the same criteria (assisted in the development of Cost Effectiveness for CMAQ projects model in California which can be used by any agency to measure the validity of their projects). In addition, this approach is based on science and not politics, and thus only the most cost effective projects will rise to the top.</td>
<td>The only disadvantage is that political or pet projects will not rise to the top for funding and in some cases locals want to see these type of projects for supporting a funding measure or what have you. Once all agencies buy into the process, they only want to see the most cost effective projects for the limited dollars available.</td>
<td>9</td>
</tr>
<tr>
<td>Passenger Counting (Transit Agency)</td>
<td>Have staff ride on routes/ ferry and collect ridership data.</td>
<td>Allows us to analyse the data for ridership numbers on our transit routes.</td>
<td>Time consuming, too much paper work and staffing to many positions to collect the data.</td>
<td>3</td>
</tr>
<tr>
<td>Requests for Service (Transit Agency)</td>
<td>Existing riders describe new or additional services that would ease their commute. These are all considered and if possible, implemented.</td>
<td>We are clearly meeting the needs of our customers.</td>
<td>There are many ideas, but with funding being limited, only a few can be implemented, thus discouraging some riders from continuing to use transit.</td>
<td>6</td>
</tr>
<tr>
<td>Ridership evaluation (Transit Agency)</td>
<td>Evaluate ridership by time and area to determine areas that are experiencing growth. Enhance service in areas and/or times that have demonstrated ridership growth. Conversely, if analysis reveals areas and/or times that are in decline, reduce or eliminate service to areas in decline and use resources saved to pay for enhancements elsewhere.</td>
<td>Allows the transit system to more effectively use funds, vehicles, and operators. Supporting growth areas promotes a faster and more robust growth.</td>
<td>Service may be deleted or reduced in areas that are still in need of service and reduction of service may increase the rate of ridership decline in these areas.</td>
<td>8</td>
</tr>
<tr>
<td>On location transit survey (Transit Agency)</td>
<td>Have staff located at bus/ ferry terminals and collect survey data.</td>
<td>We can target specific times and clientele.</td>
<td>People do not want to take the time to fill out or answer questions on the surveys.</td>
<td>3</td>
</tr>
<tr>
<td>Service Investment Strategy (Transit Agency)</td>
<td>The MVTA is developing standards for service at various transit stations, park & rides, etc. to ensure success. While funding may be a challenge to fully implement this plan, we believe it is a more thorough examination of community conditions, demographics and other statistical factors for a more objective analysis.</td>
<td>Facts and figures drive service changes.</td>
<td>Funding isn't necessarily available to fully implement this strategy.</td>
<td>8</td>
</tr>
<tr>
<td>Evaluation of development patterns (Transit Agency)</td>
<td>Place services into new development areas. Work with developers toward TOD on their projects.</td>
<td>New service immediately becomes a part of the development rather than retrofitted. Residents immediately have transit access.</td>
<td>Lower initial ridership levels.</td>
<td>5</td>
</tr>
</tbody>
</table>
Evaluation and Prioritization of Transportation Projects (continued)

Do you believe more emphasis has been placed on the evaluation/prioritization of transportation projects due to severe budget constraints over the last few years?

<table>
<thead>
<tr>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, definitely</td>
</tr>
<tr>
<td>Yes, maybe</td>
</tr>
<tr>
<td>Not sure</td>
</tr>
<tr>
<td>Maybe not</td>
</tr>
<tr>
<td>Definitely not</td>
</tr>
</tbody>
</table>

What do you consider to be the most important do’s and don’ts when conducting an evaluation of alternative transportation projects and/or prioritizing projects? Responses are listed in no particular order.

- Do be aware of political constraints and have a strategy for equitable distribution of limited funds in order to go against the subjectivity of a criteria matrix. Don’t use one tool as a stand alone determinant to priorities.
- Don’t have short term budget issues allow rash decisions to cut programs/projects which may appear to have short term gain but long term consequences,
- Every community is different with different needs so not everyone has the same evaluation technique. Money is extremely important. And a five year plan that is allowed to put a project in the out year and let it make its way up to the current year is better planned than the politics of just throwing a project in for next year and expecting us to get it designed. Planning is key for a successful capital program!
- Do involve all those affected early and often. Do provide solid documentation of evaluation. Do explicitly consider non-performance-related policies and objectives. Don’t hide anything.
- You must have good solid quality data.
- Most important is to have a methodology that all agencies agree to as this will eliminate the need for political projects (which usually are the least feasible and least cost effective). Also it is not a bad idea to have the pot balanced between road, transit and other infrastructure projects as the best emission reductions do not always come from road projects, but from transit. With this type of cost effectiveness strategy, it may be the best way to ensure that all types of projects get funding by competing with like projects.
- Criteria should be as objective as possible and relate back to the priorities established in the long range transportation plan. Projects should first be evaluated without regard to available funding to determine the highest priority and then recommended for funding based on their eligibility for various fund sources.
- Do consider road user safety data in the evaluation as the highest priority. Don’t disregard the public input.
- In our process, we consider that while an applicant may request funds from “X” program, efficient use of resources may suggest we use source “Y” instead. Getting out of program boxes has been a challenge for both staff and proposers.
- Be prepared to explain to management and elected officials how a prioritization tool is just a “tool” which should be supplemented with the knowledge professionals have of projects as well. For example, some in upper management expected our prioritization tool to produce a ranking of projects (which it did) and that we would focus on completing the projects solely in the order ranked. While this is a good approach, some lower ranked projects may need to proceed for higher ranked projects due to: public/elected official input; the fact that a lower scoring project may be easier to deliver (usually due to fewer environmental impacts); funding may not be available to deliver a higher scoring project.
- In the environment we live in now with scarce resources, it is important to have a process that is transparent, considers local input, and where there are checks and balances that hold the DOT accountable for a fair process.
- Do utilize online surveys and work with community groups that are interested in new forms of transportation modes. At this time we do not have any real don’ts when conducting evaluations of alternative transportation projects.
This Month’s Survey Results (Survey 2)

Application of Transportation Demand Modeling Results

Last month, The Urban Transportation Monitor sent survey questionnaires to transportation professionals to obtain information and opinions on the application of transportation demand modeling results. Surveys were sent to 500 agencies. Altogether 48 responses were received, for a response rate of 10%. The results of the survey are published here.

Which of the following best describes how demand modeling is practiced?

<table>
<thead>
<tr>
<th>How Demand Modeling is Practiced</th>
<th>In cities with pop. less than 200,000</th>
<th>In cities with pop. equal to or more than 200,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-house with own staff</td>
<td>17%</td>
<td>67%</td>
</tr>
<tr>
<td>In-house but limited to the application of assignment results obtained from the MPO</td>
<td>0%</td>
<td>19%</td>
</tr>
<tr>
<td>Consultants are used</td>
<td>50%</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>33%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Under "Other," respondents provided the following:
- Combination of in-house and consultants
- In-house staffing, with updates assisted by consultants
- It varies. For some projects it is 100% in-house. For other projects help from consultants is obtained
- Some of each, depending on the project or situation

Which of the following methods are used to obtain the estimated future background traffic for a Traffic Impact Analysis (TIA) when the analysis year is less than 15 years from now?

<table>
<thead>
<tr>
<th>Methods</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply historic traffic count growth rates</td>
<td>22%</td>
</tr>
<tr>
<td>Grow existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions</td>
<td>37%</td>
</tr>
<tr>
<td>Use future year assignment volumes</td>
<td>11%</td>
</tr>
<tr>
<td>Other</td>
<td>30%</td>
</tr>
</tbody>
</table>

Under "Other," respondents provided the following:
- A mixture of applying historic traffic count growth rates and of growing existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions.
- Various methods are used depending on the project.
Application of Transportation Demand Modeling Results (continued)

Please provide reasons for the method selected as an answer in the previous question (which methods are used to obtain the estimated future background traffic for a Traffic Impact Analysis (TIA) when the analysis year is less than 15 years from now)

Respondents who apply historic traffic count growth rates provided the following reasons for that choice. (Answers in no particular order.)

- Have solid historic growth rates.
- Traffic growth limited in urban road networks, and city wants to force modal change.
- All projects reduce vehicular capacity while increasing that of transit and active transportation.
- We use all three methods depending on the particular development. For short term development, we use historic growth rates most often, but will use other methods in the network in the area changes significantly or if a development is particularly large.
- Modeling data do not match development information in scope or geography.

Respondents, who grow existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions, provided the following reasons for that choice. (Answers in no particular order.)

- We usually have a 6-year assignment, a 20-year assignment, and a regional 30-year assignment, so we usually have to interpolate.
- Because the City of Rochester is a steadily growing city (due to significant presence of medical, education & computer technology companies or institutions), we have found that using historic growth rates does not adequately reflect future growth, particularly in new development areas where TIR's are typically required. We also do not like to use model numbers directly because as good as calibration is, it is linked based calibration, and there are always some problems, particularly at the level of individual turning movement volumes.
- Historic traffic count growth rates has lead to under-building a few critical locations in the past and, if the target year is truly less than 15 out, future year assignment volumes would probably be considerably too high.

Respondents who use future year assignment volumes provided the following reasons for that choice. (Answers in no particular order.)

- Use MPO future volumes as a guide.
- Growth and development in the future are spatially distributed unevenly across our urban areas. A large area model is best able to provide a more accurate picture of how traffic growth patterns will change over time on a corridor basis.
- The choice depends on the desired level of detail. This is used in some jurisdictions that maintain a model that is a six-year forecast.
- Typically, the TIA requires capacity analysis of intersections, which then requires peak-hour turning movement volumes of the intersections. My typical practice is to collect existing peak hour turning movement counts, estimate existing ADTs along the roadway segments, obtain horizon year ADTs along the roadway segments from the local MPO, determine growth rate to account for "background traffic" from the horizon year ADTs (traffic growth created from development outside of the study area), use ITE Trip Generation to estimate peak hour turning movement volumes generated by the subject site and any vacant land within the study area, sum all turning movements, then compare my estimated horizon year ADTs along the roadway segments with those obtained from the MPO.
- The base year model is well validated and is updated every year. Model forecasts are more intelligent than the growth rate projections. We are very confident in our short term future year population and employment forecasts.
- COMPASS develops forecasts from base year to horizon year in five-year increments. Therefore, a forecast that is near or mid-term is usually available. These are compared to actual-current counts.

Those who said they used other methods provided the following comments. (Answers are in no particular order.)

- State DOT policy for TIS/TIA.
- Future year assignment volumes are often looked at suspiciously if the base year volumes do not match closely or if the model does not contain sufficient detail in the area of interest.
- For short term future year (less than five years), we normally apply historic traffic count growth rate because model assignment is not available for that time periods. For intermediate future year (more than 10 years), we prefer to use future year assignment volumes. The main reason is that model assignment reflect travel patterns associated with the projected socio-economic and demographics, planned network supply and city’s policies.
- In rural areas, not covered by a TDM, historic traffic count growth rates apply. When a TDM is available, we apply a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions.
- Much of the Chicago area is already built out and should therefore experience little or no additional traffic growth.
- Usually for TIA, historic growth is used but MPO forecasts are sometime used when State/Federal roads are involved, or the local agency requests MPO involvement.
Application of Transportation Demand Modeling Results (continued)

Which of the following methods are used to obtain the estimated future background traffic for a Traffic Impact Analysis (TIA) when the analysis year is more than 15 years from now?

<table>
<thead>
<tr>
<th>Methods</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply historic traffic count growth rates</td>
<td>15%</td>
</tr>
<tr>
<td>Grow existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions</td>
<td>41%</td>
</tr>
<tr>
<td>Use future year assignment volumes</td>
<td>29%</td>
</tr>
<tr>
<td>Other</td>
<td>15%</td>
</tr>
</tbody>
</table>

Under "Other," respondents provided the following:
- A mixture of applying historic traffic count growth rates and of growing existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions

Please provide reasons for the method selected as an answer in the previous question (which methods are used to obtain the estimated future background traffic for a Traffic Impact Analysis (TIA) when the analysis year is more than 15 years from now)

Respondents who apply historic traffic count growth rates provided the following reasons for that choice. (Answers in no particular order.)
- Have solid historic growth rates.
- Generally accepted by Planning Commissions.
- State DOT policy for TIS/TIA.
- Some respondents indicated that the reason provided when the analysis year is less that 15 years is also applicable here.

Respondents who grow existing traffic counts by applying a growth rate obtained by comparing a traffic assignment for a future year to a traffic assignment for present conditions provided the following reasons for that choice. (Answers in no particular order.)
- Reasonable growth used in perspective to capacity-reducing projects that will be implemented.
- Mostly based on the model for long-range projects.
- Models are used because they reflect long range plans.
- We usually have a 6-year assignment, a 20-year assignment, and a regional 30-year assignment, so we usually have to interpolate.
- Growth and development in the future are spatially distributed unevenly across our urban areas. A large area model is best able to provide a more accurate picture of how traffic growth patterns will change over time on a corridor basis.
- We do not trust the model volume, but the growth rate is usable.
- Some respondents indicated that the reason provided when the analysis year is less that 15 years is also applicable here.

Respondents who use future year assignment volumes provided the following reasons for that choice. (Answers are in no particular order.)
- We require TIA to be done for the planning model horizon year which is normally 20-25 years out.
- A TIA that is more that 15 years out is either a transportation analysis of a local Comprehensive Plan or a transportation analysis of major infrastructure. The horizon is 20 years.
- The base year model is well validated and is updated every year. We have good future year population and employment forecasts.
- COMPASS develops forecasts from base year to horizon year in five year increments. Therefore, a forecast that is near or mid-term is usually available. These are compared to actual-current counts.
- For longer time period, we use model assignment because it reflect travel patterns associated with the projected socio-economic and demographics, planned network supply and city’s policies.
- The model is considered most accurate in this situation.
- In most cases, since the surrounding areas are already built up, the only increased traffic volumes would be from the new development itself. If additional build out is anticipated in surrounding areas, then that should also be taken into account.
- Some respondents indicated that the reason provided when the analysis year is less that 15 years is also applicable here.

Those who said they used other methods provided the following comments. (Answers are in no particular order.)
- Unless I feel very good about the model, I'll also consult historic growth rates and other area plans.
- In rural areas, not covered by a travel demand model, the application of historic growth rates applies. When a travel demand model is available, we use assignment results.
- Usually for TIA, historic growth is used but MPO forecasts are sometime used when State/Federal roads are involved, or the local agency requests MPO involvement.
- Some respondents indicated that the reason provided when the analysis year is less that 15 years is also applicable here.
Application of Transportation Demand Modeling Results (continued)

Please rate the quality of demand modeling traffic assignment results on a scale of 0 to 10 with the following explanation of the rating scale: a) 0 = assignment results are often unreliable/illlogical and unstable and there is a strong sense that it cannot be trusted; b) 10 = assignment results can always be trusted and are considered totally reliable, logical and stable.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>4%</td>
</tr>
<tr>
<td>5-7</td>
<td>61%</td>
</tr>
<tr>
<td>8-10</td>
<td>35%</td>
</tr>
</tbody>
</table>

Please provide reasons for your rating in the previous question

Reasons from respondents who provided a rating from 1 to 6 (Answers in no particular order.)

- Models do not reflect current information, lack specificity in geography, lack functionality in mode and turning movements.
- Good MPO staff has compiled high-quality demographic and employment data. However, model is not sophisticated: trip-based without trip chaining or activity-based formulations; limited mode split for transit; no non-motorized modes; standard gravity model for trip distribution; not sensitive to policy inputs; no front-end land use or economic model; no feedback loops within model; only forecasts daily traffic. Calibration is suspect.
- Demand is more based on a policy basis, hence some doubts. For example future transit demand may be exaggerated by stakeholders, while an increase in vehicular demand will be underestimated.
- Traffic modeling in the future is always a shot in the dark; we do the best we can.
- It does not seem as if the models I have used from several MPO’s have been validated to the level of base year accuracy that I’m looking for. Some are better than others.
- Local growth has at times been explosive and not always as predicted.
- Modeling is a process that requires knowledge, expertise and resources in order to produce reliable and credible results. Our rating indicates that more resources and expertise is necessary to allow us to improve our performance.
- The model can be much improved in many ways.

Reasons from respondents who provided a rating from 7 to 10 (Answers in no particular order.)

- Mostly reasonable, but reviewers often want fine tuning.
- The model is quite good on a regional basis. But when moving to an individual roadway segment, projections may be off. Any facility may have specific issues such as driveway spacing or special generators that require adjustment of model numbers.
- The regional model, on which ours is based, has had a screenline bust on our south border for years. We model down to the minor collector level, and getting realistic assignments in future years is a challenge because of diversion to those minor collectors.
- The prior iteration of our model handled major intersections poorly and had very unrealistic traffic assignments. Our current model handles intersections better which has made the numbers more realistic.
- High volume roads have reliable forecasts, low volume do not. Confidence level a challenge for assumptions. For example, cost of fuel and parking.
- The model is a macro level model so using the forecasts for any project level analysis needs some modifications to perform sub area analysis.
- Major routes (freeways, major arterials) are more accurate, but even they can run “high” or “low”. Lower level streets, as often TIAs are located on, tend to be more hit and miss as they are not the highest priority of the modelers and the placement of centroid connectors can have a great effect on local assignments.
- I think the users of the data have confidence in the modelers who have been with the agency 15+ years and thus have a pretty good understanding of traffic patterns and history in the city. I think a 2nd factor is that we put a lot of emphasis and time into calibration and thus have a heightened level of confidence in the results.
- If I can, I try to also obtain a map of how the zones are being connected to the roadway network for my study area of interest. That way I have an idea of how “macroscopic” the traffic projections are.
- We have been using these methods for 12 years now and so far have been relatively reliable
- the forecasts are trusted and stable but, often checked. In most cases, the model forecasts are used and require minor refinement using the traditional raw model adjustment procedures.
- Have been steadily improving since new tour based model was implemented several years ago. Bugs have been worked out.
- The Emme3 model was calibrated in 2007 to reflect current travel patterns using extensive 2005 household travel survey data and validated using observed traffic data. The model perform very well on screenline level. Also, the advanced modeling techniques and framework leading to a increased level of reliability of the modeling results as well as their sensitivity to various socio-economic scenarios, land-use development and transportation improvements. Further, the model forecast for year 2010 was tested and found within +2% against observed traffic counts. For future year assignment, we perform logical checks on the model output such as travel vs. demographic growth, sentivity tests such as changing network supply, desired lines etc to make sure they make sense. However, extra caution are applied when analysing specific geographical area especially at link level.
Application of Transportation Demand Modeling Results (continued)

When using traffic assignment results for a sub-area analysis to determine the performance of a highway network in terms of v/c ratios, which of the following types of assignments are typically used?

<table>
<thead>
<tr>
<th>Methods</th>
<th>Percentage of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak hour assignments</td>
<td>56%</td>
</tr>
<tr>
<td>Peak period assignments</td>
<td>22%</td>
</tr>
<tr>
<td>Daily (24 hour) assignments</td>
<td>15%</td>
</tr>
<tr>
<td>Other</td>
<td>7%</td>
</tr>
</tbody>
</table>

Please provide reasons for the type of assignment selected as an answer in the previous question.

Respondents who selected peak hour assignments
- Due to the size of our jurisdiction (2,400+ signals), traffic counts are expensive and time-consuming. We have some peak period data, but mostly work with peak hours to save time and money, both in data-gathering and analysis.
- Since we invariably design to the peak hour, we try to have all our projections end up with a peak hour value.
- HCS analysis is typically peak hour based.
- State of the system that is most predictable and therefore most accurate in simulating.
- Peak hours test roadway capacity.
- Our jurisdiction is still at the point where we don’t experience complete saturation for the peak hour so at this point it is still an expectation to be designing facilities to function with a v/c of less than 1.0 for the peak hour.
- Our model has peak hour scenarios only - no 24 hour assignments are modeled.
- Peak periods in Kansas typically do not last more than an hour, except in the Kansas City region. The peak hour is typically what we attempt to design for.
- First, our peak travel period does not extend over multiple hours, so a single peak hour is adequate. We typically look at PM peak hour in TIR’s, though for employment based uses such as office or manufacturing will also look at AM peak hour. We do not use 24 hour assignment for the reason (I think) that the traffic engineers / analysts who conduct work in our hour as well as the public highway agency staff feel more comfortable with peak hour results.
- The only time of the day we have measurable congestion.
- Peak hour for land use permitting and planning.
- All infrastructure growth in the city are planned to address peak hour demand.

Respondents who selected peak period assignments
- Closest available to TOD needs.
- To reduced the run time, also, we did not need the detailed data like peak hour assignment.
- We view peak period as most reliable from a regional model perspective.
- The regional model is based on peak periods, which we adjust to get peak hour. A 4-hour average of v/c ratio is meaningless unless the roadways are totally congested the whole peak period.
- That is what the model readily produces. Factors are applied to get peak hour. ADTs are also sometime used to develop design hour volumes.

Respondents who selected daily (24 hour) assignments
- We do not have a peak hour model at this time.
- Peak hour and peak period assignments are considered to be unreliable.
- Model is only calibrated to 24 hours.
Application of Transportation Demand Modeling Results (continued)

What do you consider the most important do's and don'ts when applying demand modeling results?

- Be aware of trends in population movement, and increasingly geographically dispersed work trips.
- Do not use the historic traffic volume trends for doing travel demand modeling. That only works in areas that are currently continuing to grow and will do so into the foreseeable future. That does not apply to most of our mature urban areas.
- I would never blindly follow the results of demand models.
- Understanding the level of spatial detail inherent to the model used in terms of the TAZ system used and the network details coded.
- Use MPO forecasts, but note their limitations with respect to your sub-area.
- Don’t place too much faith in the numbers. If you can reasonably argue why a value looks to be wrong it probably is and may need to be logically tweaked for analysis.
- Don’t over-imply accuracy by displaying exact estimated volumes.
- Consult with the modeler to find out his/her level of confidence in the region concerned. Don’t use raw model output. Collect data from as many sources as practical to compare against. Use adjustment factors fairly.
- I think it important to do existing ADT counts as a check on the calibrated model information and to make adjustments if necessary if there is a significant variance between the two. I think there is also a need to closely evaluate turning movement field counts against model forecasts - this is probably the one area where professional judgement in terms of adjusting the model is important prior to setting on final growth rates. I think we find you also need to critically review centroid connector locations if the existing/base year model numbers are at significant variance, as the location of loading points can have a noticeable effect on link volumes in a micro scale area.
- It is a forecasts and no one knows the future so professional judgment and documentation are a must.
- Recognize all modeling assumptions.
- Demand model is a state-of-the-prac tice tool to forecast future years travel demand. It is important to always apply logical checks on the model results and if possible compare model results with other methodologies such as Direct demand model, market analysis etc. for specific project. Never use fine level model output directly especially link volumes and always apply professional judgement.
- Don’t use regional models off-the-shelf; always refine, adjust.
- Common sense is the best tool available. Compare base year to base counts. Check centroid connectors and local loading.
- On a macro level, screenline analysis can hide a lot of compensating errors. The finer the level of detail, the closer you need to check your coding. 2) If your MPO’s model is large, expect a lot of coding errors - they don’t have the time to check coding assumptions. We’ve found arterials coded as 2-lane that were widened 30 years ago. 3) Don’t use the Fratar technique to develop turning movement forecasts - it’ll take your side street volumes to 0. Post-processing and reasonableness reviews are vital for this task. 4) If a minor street is over-assigned, look for the bottleneck causing the diversion; it may be a coding error, or it may be a future capacity constraint. Because it may not be immediately apparent which, never rely blindly on an assignment.
- Realize that the results are not going to be accurate for 20-30 years from now. Ignore that fact, but don’t forget that fact. Use common sense and good judgement depending on the purpose.
- Do trust your instinct, if it doesn’t seem to match reality then do question it. Also, garbage in = garbage out, so it is important to calibrate to existing conditions and make sure you have the most up to date information.
- Carefully evaluate/reevaluate external influences and run several scenarios.
- Don’t take the results of the model literally. Apply some judgment in order to get a reasonable answer.
- Do not use the model or the results unless you have documentation of model development and calibration; understand the limitations of the model, including what is modeled in the results and what is ignored (phenomena, modes, populations, trip purposes); perform detailed reality checks on results; follow an accepted methodology (e.g., NCHRP for estimating peak hour volumes); document your process and track all post-model processing; always maintain good communication with the model owner — discuss results and possible model improvements.
- Obtain a map of how the zones connect to the roadway network.
1. Park and Ride Expansion Study
Agency: City of Chapel Hill, NC
Deadline: 2010-11-29 16:00:00
Contact: For general information and/or questions related to this RFP, contact Emily Yasukochi, Transit Services Planner at eyasukochi@townofchapelhill.org
Description: Chapel Hill Transit/Community of Chapel Hill is requesting Statements of Qualifications from firms to conduct a feasibility study, environmental assessment, and preliminary (30%) engineering design for the expansion of park-and-ride capacity at the existing Eubanks Rd Park-and-Ride site in Chapel Hill, NC. Both surface and structured parking shall be evaluated in the feasibility study.
Website: http://www.townofchapelhill.org/index.aspx?reqid=80

2. Dynamic Traffic Assignment (DTA) Simulation Model
Agency: Michigan Department of Transportation
Deadline: 2010-11-29 12:00:00
Contact: Gladyso Akinyemi, P.E. Michigan Department of Transportation, 18101 W. Nine Mile Road, Southfield, MI 48075 (248) 483-5121 (248) 569-0621 (Fax) Akinyemissa@mdot.state.mi.us
Description: This project is to develop calibrated Dynamic Traffic Assignment (DTA) models of the southeast Michigan Council of Governments’ (SEMCOG) Network that the Agency will use to analyze the overall traffic performance of the system. The models will be calibrated to perform in a manner consistent with the transportation planning and project development activities of the Agency.

3. Indirect Cost Plan Development Statewide
Agency: Louisiana Department of Transportation
Deadline: 2010-12-26 05:00:00
Contact: Ms. Debra L. Guest, P.E. Consultant Contract Services Administration 1201 Capitol Avenue, Road, Room 405-T Baton Rouge, LA 70802-4438 or Post Office Box 94245 Baton Rouge, Louisiana 70804-9245 Telephone: (225) 378-1989
Description: The purpose of this Request for Proposals (RFP) is to obtain competitive bids, from firms experienced in indirect cost plans who are interested in providing Consultant Services for the development of an Indirect Cost Plan for the State of Louisiana, Department of Transportation and Development. A significant amount of the Department’s expenditures are for federally funded highway construction projects. The FHWA has prescribed policies and procedures for reimbursing a state highway agency for allowable administrative and overhead costs. The Department has implemented a new SAP Enterprise Resource Planning System (ERP) “LaGov” which will provide the basis for the development of a new Indirect Cost Plan which should be based on actual direct labor and fringe rates.
Website: http://webmail.dot.state.la.us/agrestat.nsf/9ff2e3e9315e25f8ed627517e0555160e60e60d338353d3d8b0625777ce00462161d51f73799-111%20direct%20cost%20development.pdf

4. On-Call Traffic Engineering Services
Agency: Arizona Department of Transportation
Deadline: 2010-12-07 14:00:00
Contact: For further information, contact ADOT Engineering Consultants Section at (602) 712-7525.
Description: The Arizona Department of Transportation (ADOT) is soliciting Statement of Qualifications (SOQs) from firms to provide Professional Engineering Services on an On-Call basis for the design of pavement marking plans, traffic control plans, signing plans and traffic signal plans to support pavement preservation projects, safety projects, bridge widening projects or similar projects.
Website: http://www.adot.gov/highways/ecs/pdf/package/11-02-spcheck.pdf

5. Household Travel Survey
Agency: Genesees Transportation Council, NY
Deadline: 2010-12-17 16:00:00
Contact: Chris Tortora, Assistant Program Manager Genesees Transportation Council 50 W. Main St. Suite 8112 Rochester, NY 14614-1227 Tel: (585) 232-6240 Fax: (585) 262-3106 E-Mail: cttortora@gtcmpo.org
Description: GTC is seeking a consultant with recognized technical expertise to conduct a Household Travel Survey and performance model calibration. The consultant would perform the travel survey in Rochester, NY Transportation Management Area (TMA). The previous GTC Household Travel Survey was conducted in 1999. Since then, socio-economic and transportation infrastructure changes have occurred altering behavior and associated travel patterns that need to be incorporated into the Model. Revisions to the data utilized in the Model are needed to ensure that outputs of future year scenarios are as representative of likely conditions as possible. The Model is a traditional four step model that, once calibrated and validated, is used to predict future travel demand based on projected changes in household and employment characteristics to satisfy air quality conformity and Congestion Management Process requirements; to inform transportation planning issues at the corridor, neighborhood, and Rochester TMA levels; and assist in the design of projects included in the Transportation Improvement Program.
Website: http://www.gtcmpo.org/GetInvolved/FundingOpportunitys/RFP-RFO%20Opportunities.htm

6. New Scotland Hamlet Master Plan
Agency: Capital District Transportation Committee, NY
Deadline: 2010-12-03 17:00:00
Contact: Jennifer Cepionis from the CDTC will serve as the contact for expressions of interest and administrative questions. Her telephone number is (518) 458-2161.
Description: The study is being funded jointly by the CDTC through its 2010-11 Community and Transportation Development Program (CONSULTANT) shall assist the OCTA's Highway Project Delivery (HPD) Department in planning, monitoring, and controlling the overall capital development program. The CONSULTANT shall provide the OCTA additional project management staff to assist in managing individual projects. The CONSULTANT shall also provide technical and administrative assistance to the OCTA in environmental, engineering, right of way acquisition, and construction activities. The projects include those funded by Measure M, the half-cent sales tax program, and state and federal funding sources. The OCTA is obligated to deliver these projects using the funds available and in a timely manner.
Website: http://www.soundtransit.ebidsystems.com/solicitation.aspx?uid=00000000-0000-0000-0000-000000000000&sid=1735

7. City of Moscow Multi-Modal Transportation Plan
Agency: City of Moscow, ID
Deadline: 2010-12-08 17:00:00
Contact: All project specific questions shall be directed by e-mail to Moscow City Engineer Kevin Lilly, P.E. at klilly@ct.moscow.id.us.
Description: The City of Moscow is requesting proposals from consulting firms to create a new Long-Range Multi-Modal Transportation Plan. This project is being funded through the Idaho Transportation Department’s STP-Local Urban program administered by the Local Highway Technical Assistance Council. The City estimates the completion and adoption of the plan within 24 months. The City will utilize the information from this Transportation Plan to ensure that transportation funds are spent with the best possible investment for future improvements to our roadways, bicycle/pedestrian facilities, and public transit systems.
Website: http://www.idt.idaho.gov/design/cau/solicitations/201281% 20RFP.pdf

8. Rail Engineering and Investigation Services
Agency: Sound Transit, WA
Deadline: 2010-12-02 14:00:00
Contact: David Christianson, Sr. Contract Specialist 206 398-5137 david.christianson@soundtransit.org
Description: The Central Puget Sound Regional Transit Authority (Sound Transit) is accepting Statements of Qualifications (SOQs) from firms qualified and interested in providing consultant services to develop a comprehensive engineering plan for light rail noise mitigation and maintenance services.
Website: http://www.soundtransit.ebidsystems.com/solicitation.aspx?uid=00000000-0000-0000-0000-000000000000&sid=1735

9. Program Management Support
Agency: Orange County Transportation Authority, CA
Deadline: 2010-12-14 14:00:00
Contact: Pia Veesapen, Senior Contract Administrator Contracts Administration and Materials Management Department 600 South Main Street, P.O. Box 14184 Orange, CA 92863-1584 Phone: 714.560.5619, Fax: 714.560.5792, or E-Mail: pveesapen@ocuta.ca
Description: The Orange County Transportation Authority (OCTA) is responsible for developing a large number of transportation projects in Orange County, including projects associated with freeway, highway, and rail facilities. The OCTA’s management of these projects includes oversight of environmental clearances, engineering, right of way acquisition, and construction activities. The projects include those funded by Measure M, the half-cent sales tax program, and state and federal funding sources. The OCTA is obligated to deliver these projects using the funds available and in a timely manner.
Website: http://www.ocuta.ca/utm/callforideas/01788_0.pdf

NOTE: If you wish to receive these other and other RFP notices IN ADVANCE VIA THE INTERNET OR BY FAX, please call us at (703) 764-0512 for details.
CONFERENCES

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
<th>Organizer/Details</th>
<th>Fees</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(530) 547-2060 symposium@americantrAILS.org</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 14-17</td>
<td>Green Streets & Highways Conference (ASCE – in cooperation with FHWA and EPA and in collaboration with ITE and AASHTO)</td>
<td>Denver, CO</td>
<td>Renaissance Denver Hotel Topics for this interactive conference on the state of the art and how to achieve sustainable outcomes include: Sustainable Transportation Strategies and Project Development; Green Design, Materials and Specifications; and Green Construction and Maintenance.</td>
<td>N/A</td>
<td>www.green-streets-highways.org</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 15-19</td>
<td>International Conference on Public Transport Financing (UITP, MTR)</td>
<td>Hong Kong, China</td>
<td>AsiaWorld-Expo Growth in demand for public transport and rising expectations in terms of quality of supply call for the mobilization of financial resources to increase capacity, train staff, develop innovations, and provide full portfolios of services. The financial and economic crisis that hit the world in 2008-2009 has brought to the fore the need for diversified revenues, stable funding schemes, innovative approaches and partnerships.</td>
<td>N/A</td>
<td>www.uitp.org/hongkong2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jérôme Pourbaix +32.2.663 66 22</td>
</tr>
<tr>
<td>Nov 16-18</td>
<td>3rd Annual 2010 Border to Border Transportation Conference (El Paso MPO, Hidalgo County MPO)</td>
<td>El Paso, TX</td>
<td>Judson F. Williams Convention Center The goal is to cover all of the area from the U.S. / Mexico International Border Area to the U.S. / Canada International Border Area, Themes include but are not limited to: Land Use, Multi-Modal Issues, Transit Planning, Regionalism, Financing, Infrastructure, Safety, Homeland Security, and International Planning.</td>
<td>150-200 $150</td>
<td>http://www.hcmpo.org/conference/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Efren Meza (915) 591-9735 ext. 33</td>
</tr>
<tr>
<td>Nov 17</td>
<td>2nd UITP Combined Mobility Platform Workshop (UITP)</td>
<td>Brussels, Belgium</td>
<td>STIB Offices - Rue des Colonies 62 Workshop will address how car-sharing, bikes and taxis can support public transport and how a successful collaboration is mutually beneficial.</td>
<td>70 Free</td>
<td>http://www.uitp.org/events/2010/combined_mobility/en/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caroline Cerfontaine caroline.cerfontaine@uitp.org</td>
</tr>
<tr>
<td>Nov 17-19</td>
<td>First International Symposium on Advances in Transport Sustainability (ISATS) (ATPIO, IRF)</td>
<td>Tempe, AZ</td>
<td>Arizona State University The conference’s focus is on best practices and recent advances in transport sustainability, and exhibitors showcasing the latest products and technology in the field. Mr. John Horsely, executive director of AASHTO is confirmed as the opening keynote speaker.</td>
<td>N/A</td>
<td>http://www.isats2010.org/index.html</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISATS Secretariat secretariat@isats2010.org</td>
</tr>
<tr>
<td>Dec. 1-3</td>
<td>International Conference on Sustainable Mobility (SAE International - Malaysia)</td>
<td>Kuala Lumpur, Malaysia</td>
<td>Best Western Premier Seri Pacific Hotel This forum is about all aspects of sustainable technology. It has the key theme – “Moving towards Green Technologies“.”</td>
<td>N/A</td>
<td>http://seminar.spaceutm.edu.my/csm2010</td>
</tr>
<tr>
<td>Dec. 12-15</td>
<td>Transpo2010 (ITS Florida, FDOT, FHWA, ITS Georgia, GDOT, and the Florida and Georgia Sections of ITE)</td>
<td>Ponte Vedra, FL</td>
<td>Sawgrass Marriott The theme is “ITS—Now More than Ever.” Sessions will focus on the “now” of intelligent transportation, showcasing current projects, and demonstrating how to do more with cost-efficient ITS solutions which maximize roadway and transit capacity. They will also explore the “more” of ITS, focusing on solutions that reach far beyond standard deployments. Finally, they will examine long range planning solutions.</td>
<td>350 $375 m $425 nm</td>
<td>http://www.itstranspo.org/register.html</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Karen Crawford 850-224-7775 kcr4wford@cmc-associates.com</td>
</tr>
</tbody>
</table>

N/A = Not Available; m = member; nm = non-member. To list your transportation conferences here FREE, send all information as above to: The UTM Conference Dept., P.O. Box 12300, Burke, VA 22009-2300, or call (703) 764-0512, or fax (703) 764-0516, or email: editors@laweypublications.com.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event Name</th>
<th>Location</th>
<th>Venue</th>
<th>Description</th>
<th>Fee</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 3-5</td>
<td>6th Annual Texas Transportation Forum</td>
<td>Austin, TX</td>
<td>Hilton Austin</td>
<td>The forum will focus meet our greatest challenge – how to deliver a first-rate, modern transportation system for the future.</td>
<td>$425 Standard $225 Gov’t $275 Non-profit</td>
<td>Cynthia Mueller (512) 936-4241 http://www.bxdot.gov/ttf/</td>
</tr>
<tr>
<td></td>
<td>(Texas DOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shoreham, and Washington Hilton Hilton hotels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 29</td>
<td>Inaugural Saudi Urban Transportation Summit (IQPC)</td>
<td>Riyadh, Saudi Arabia</td>
<td>Radisson Blu Hotel</td>
<td>Focus is on regional experts and their approaches to urban transportation projects including best practice in asset management, implementing sustainability, and addressing the challenges which are unique to Saudi Arabia’s infrastructure environment.</td>
<td>USD $2,519</td>
<td>http://www.iqpc.com/Event.aspx?id=367502 +971 4 364 2975 enquiry@iqpc.ae</td>
</tr>
<tr>
<td>Mar 6-8</td>
<td>IBTTA Legislative Conference</td>
<td>Washington, DC</td>
<td>Holiday Inn Capitol Hill</td>
<td>Transportation infrastructure operators and the toll industry are facing a new world in project finance, transportation revenue, environmental mandates, and safety/security concerns. This forum will address the breadth of these issues.</td>
<td>N/A</td>
<td>Mark Muriello mmuriello@panynj.gov</td>
</tr>
<tr>
<td>Mar 13-16</td>
<td>Geo-Frontiers 2011</td>
<td>Dallas, TX</td>
<td>Sheraton Dallas Hotel</td>
<td>This forum aims to share new developments in geotechnical engineering technologies -- the latest state of the art and practice as applied to geotechnical engineering. It will have extensive technical programs, workshops and short courses—from design and engineering strategies to cost-saving geotechnical solutions.</td>
<td>N/A</td>
<td>http://www.geofrontiers11.com/index.cfm Registration: Tracie Coopet (651) 225-6947 tkcoopet@ifai.com Program: Barbara Connett, (651) 225 6914 bjconnett@ifai.com</td>
</tr>
<tr>
<td>Mar 13-16</td>
<td>First T&D Congress (ASCE)</td>
<td>Chicago, IL</td>
<td>Holiday Inn Chicago Mart Plaza</td>
<td>The First ASCE Transportation & Development Institute Congress will discuss integrated strategies focusing on smart development and the efficient multi-modal movement of people and goods to support the economic pulse of the nation and the world.</td>
<td>N/A</td>
<td>www.tanddi.org/events</td>
</tr>
<tr>
<td>Mar 22-23</td>
<td>8th International Workshop on Intelligent Transportation (Hamburg University of Technology, Smartmicro, IEEE Communications Society – Germany Chapter)</td>
<td>Hamburg, Germany</td>
<td>Hotel Hafen Hamburg</td>
<td>WIT 2011 Workshop will focus on new developments in the field of transportation systems, sensor concepts and communication technologies.</td>
<td>N/A</td>
<td>http://wit.tu-harburg.de/ rohling.wit@tu-harburg.de</td>
</tr>
<tr>
<td>Mar 27-29</td>
<td>National Conference on Highway Safety Priorities (Lifesavers)</td>
<td>Phoenix, AZ</td>
<td>Phoenix Convention Center</td>
<td>Premier national highway safety meeting in the United States dedicated to reducing the tragic toll of deaths and injuries on our nation’s roadways.</td>
<td>1,800 By Febuary 11: $350 After: $450</td>
<td>Mary Lofgren 703-922-7944 marylofgren@cox.net</td>
</tr>
</tbody>
</table>

N/A = Not Available; m = member; nm = non-member. To list your transportation conferences here FREE, send all information as above to: The UTM Conference Dept., P.O. Box 12300, Burke, VA 22009-2300, or call (703) 764-0512, or fax (703) 764-0516, or email: editors@lawleypublications.com.